Mathematics G4403y
 Modern Geometry

Assignment \#8

Due February 5, 2014
0. Show that in \mathbf{R}^{n}, a line (segment) is (up to reparametrization) the unique shortest (piecewise regular parametric) curve between two given endpoints.

1. Let M be a connected Riemannian manifold. For $x, y \in M$, let $C(x, y)$ be the set of all piecewise regular parametric curves γ from x to y. Also let $\ell(\gamma)$ be the arclength of γ. Show that $d(x, y):=\inf _{C(x, y)} \ell(\gamma)$ defines a metric in the topological sense whose metric topology agrees with the usual topology on M. The hard part is to show that $d(x, y)>0$ when $x \neq y$.
2. On a Riemannian manifold M, define the angle between tangent vectors $v, w \in T_{p} M$ to be $\arccos (\langle v, w\rangle /|v||w|)$. Show that a map of Riemannian manifolds is conformal if and only if it preserves angles. If \mathbf{C} is regarded as \mathbf{R}^{2} with the standard metric, show that a map $\mathbf{C} \rightarrow \mathbf{C}$ is conformal if and only if it is holomorphic or antiholomorphic.
3. Show that the parametrization of a curve by arclength is canonical up to translations and reflections. That is, if $\gamma:[a, b] \rightarrow M$ is a regular parametric curve on a Riemannian manifold and $f:[c, d] \rightarrow[a, b]$ is a diffeomorphism, show that the arclength parametrizations of γ and $\tilde{\gamma}=\gamma \circ f$ differ only by a reparametrization of the form $\tilde{s}= \pm s+k$ for some constant k.
4. If $\gamma(s)$ is a curve in \mathbf{R}^{n} parametrized by arclength, recall that the unit tangent vector is $T=\gamma^{\prime}(s)$ and the curvature is $\kappa(s)=|d T / d s|$. Show that if the curvature is zero, then γ is a straight line. Two curves in \mathbf{R}^{n} are congruent if there is a rigid motion $x \mapsto A x+b$ of \mathbf{R}^{n}, for constant $A \in O(n), b \in \mathbf{R}^{n}$, taking one to the other. Give a counterexample in \mathbf{R}^{2} to show that two curves with the same curvature need not be congruent. In \mathbf{R}^{2}, refine the definition of curvature and prove that with your refined definition, curves with the same curvature are congruent.
5. Show that any isometry from \mathbf{R}^{n} to itself must take straight lines to straight lines. Show that the only such isometries are those of the form $x \mapsto A x+b$ for constant $A \in O(n), b \in \mathbf{R}^{n}$.
6. Show that a sum of finitely many Riemannian metrics is a Riemannian metric. Use a partition of unity to show that every smooth manifold admits a Riemannian metric.
7. Find explicit formulas for the matrix elements $g_{i j}, 1 \leq i, j \leq 2$, of the induced metric on the 2-torus in \mathbf{R}^{3} with coordinates (θ, ϕ) embedded via

$$
(\theta, \phi) \mapsto((a+b \cos \phi) \cos \theta,(a+b \cos \phi) \sin \theta, b \sin \phi)
$$

8. Given a Riemannian metric g and a smooth vector field X on a manifold M, define a Lie derivative $L_{X} g$ (assigning to each $p \in M$ a symmetric tensor $\left(L_{X} g\right)_{p} \in T_{p}^{*} M \otimes T_{p}^{*} M$) and show that the flow of X acts by isometries if and only if $L_{X} g=0$.
