Mathematics G4402x
 Modern Geometry

Assignment \#7

Due December 11, 2013
General note: "computing" the de Rham cohomology means describing it up to isomorphism, which for a finite-dimensional vector space just means giving its dimension. So you just have to compute the k th Betti number $h^{k}(M):=\operatorname{dim} H^{k}(M)$ for each k.
There are 4 additional problems, which I'll distribute in lecture on a handwritten sheet.

1. If M is an oriented, connected, noncompact manifold of dimension n, then $H^{n}(M)=0$.
2. (a) Compute the de Rham cohomology of \mathbb{R}^{n} minus m points. Use Mayer-Vietoris.
(b) If $\ell \neq m$, show that \mathbb{R}^{n} minus ℓ points is not diffeomorphic to \mathbb{R}^{n} minus m points.
3. (a) Find a diffeomorphism $\left\{\mathbf{u} \in \mathbb{R}^{2}|0<|\mathbf{u}|<3\} \rightarrow\left\{\mathbf{u} \in \mathbb{R}^{2}|1<|\mathbf{u}|<3\}\right.\right.$ which is the identity on $\left\{\mathbf{u} \in \mathbb{R}^{2}|2<|\mathbf{u}|<3\}\right.$.
(b) Let the trinion T be the complement in S^{2} of three disjoint embedded closed disks, say $x \geq 1-\epsilon, y \geq 1-\epsilon$, and $z \geq 1-\epsilon$ for some small ϵ. Show that the trinion is diffeomorphic to \mathbb{R}^{2} minus 2 points. [Hint: define the map on each open set in a cover and invoke the gluing lemma.]
(c) Compute $H^{k}(T)$ for each k, and the rank of the restriction maps $H^{k}(T) \rightarrow H^{k}(A)$, where A is the disjoint union of the three annuli $1-2 \epsilon<x<1-\epsilon, 1-2 \epsilon<y<1-\epsilon$, $1-2 \epsilon<z<1-\epsilon$. Also compute $H_{c}^{k}(T)$ for each k.
4. Two compact, oriented, embedded submanifolds $N_{0}, N_{1} \subset M$ are said to be cobordant if there is a compact, oriented, embedded submanifold $N \subset M \times[0,1]$ with boundary $\partial N=-N_{0} \times\{0\} \cup N_{1} \times\{1\}$. Here $-N_{0}$ denotes N_{0} with the opposite orientation. Show that if N_{0} and N_{1} are cobordant and $\nu \in Z^{n}(M)$, then $\int_{N_{0}} \nu=\int_{N_{1}} \nu$. Exhibit a cobordism on the trinion between a circle and the disjoint union of two others.
5. The Brouwer degree of a map. Let $f: M \rightarrow N$ be a smooth map between compact, connected, oriented manifolds of the same dimension n.
(a) Show that $H^{n}(M) \cong \mathbb{R} \cong H^{n}(N)$.
(b) Use Sard's theorem to show that the set of regular values of f is dense in N.
(c) Show that the set of regular values of f is open in N, and for any such value y, $f^{-1}(y)$ is finite.
(d) For any $y \in N$, construct a closed form $\nu_{y} \in \Omega^{n}(N)$, supported in a small disk around y, so that $\int_{N} \nu_{y}=1$. Show that $\left[\nu_{y}\right]=\left[\nu_{z}\right] \in H^{n}(N)$ for any $y, z \in N$.
(e) For any regular point $x \in M$ of f, let $\operatorname{sgn} x:=\operatorname{det} D_{x} F /\left|\operatorname{det} D_{x} F\right|$, where $F=$ $\psi \circ f \circ \phi^{-1}$ for oriented charts ϕ, ψ near x and $f(x)$. Show that sgn x does not depend on the choice of ϕ and ψ.
(f) If $y \in N$ is a regular value of f, let $\operatorname{deg}_{y} f:=\sum_{x \in f^{-1}(y)} \operatorname{sgn} x \in \mathbb{Z}$. Show that if y, z are two regular values, then $\operatorname{deg}_{y} f=\operatorname{deg}_{z} f$. Call this the degree of f.
(g) For each $n \in \mathbb{Z}$, give an example of a map $S^{1} \rightarrow S^{1}$ of degree n.
(h) If the degree of f is nonzero, show that f is surjective. Is the converse true?
6. (Extra credit) Identify the literary reference in I $\S 3$ of Bott \& Tu.
