Mathematics G4402x Modern Geometry

Assignment \#6

Due November 25, 2013

1. (a) An isomorphism of oriented vector spaces is said to be orientation-preserving if it takes oriented bases to oriented bases, and orientation-reversing otherwise. If $F: M \rightarrow$ N is a diffeomorphism of connected manifolds, show that $D_{p} F$ is either everywhere orientation-preserving or everywhere orientation-reversing. (If the former, F itself is said to be orientation-preserving.)
(b) For which n is the antipodal map $F: S^{n} \rightarrow S^{n}$ given by $F(v)=-v$ orientationpreserving?
2. Let a finite group Γ act smoothly and freely on a connected oriented manifold M.
(a) Show that the pullback induces an isomorphism

$$
\Omega^{k}(M / \Gamma) \cong\left\{\nu \in \Omega^{k}(M) \mid \gamma^{*} \nu=\nu \text { for all } \gamma \in \Gamma\right\} .
$$

(b) Show that M / Γ is orientable if and only if the action of every $\gamma \in \Gamma$ is orientationpreserving.
(c) Use the quotient map from S^{n} to show that $\mathbb{R P}^{n}$ is orientable if and only if n is odd.
3. If M is a manifold and 0 is a regular value of $f \in C^{\infty}(M)$, show that $f^{-1}[0, \infty)$ is a manifold with boundary.
4. If μ and ν are closed forms, show that $\mu \wedge \nu$ is closed. If, in addition, ν is exact, show that $\mu \wedge \nu$ is exact.
5. Sketch how the ordinary Divergence Theorem in \mathbb{R}^{3} may be obtained as a special case of the general Stokes's Theorem.
6. Let $\omega \in \Omega^{n-1}\left(\mathbb{R}^{n}\right)$. Prove that ω is closed if and only if its integral over every $(n-1)$ sphere is zero (regardless of the center and radius).
7. Let $\nu \in \Omega^{1}\left(\mathbb{R}^{2} \backslash(0,0)\right)$ be the form " $d \theta$ " discussed in class, namely

$$
\nu=\frac{x d y-y d x}{x^{2}+y^{2}} .
$$

Determine $\int_{S} \nu$ and $\int_{T} \nu$, where S and T are circles of radius 5 , oriented counterclockwise, with centers at $(1,2)$ and $(7,2)$ respectively. Explain your reasoning.
8. (Only for those who have never studied differential forms before.) Make sure you know how to integrate differential forms in practice by parametrizing a specific, nontrivial 1-manifold with boundary (e.g. a helix) in \mathbb{R}^{3} and integrating a specific, nontrivial $\nu \in \Omega^{1}\left(\mathbb{R}^{3}\right)$ over it. Same for a 2-manifold with boundary in \mathbb{R}^{3} (e.g. a hemisphere) and a 2 -form.

