Mathematics G4402x
 Modern Geometry

Assignment \#5

Due November 11, 2013

1. Suppose G is a connected Lie group and H is any Lie group. If $\Phi, \Psi: G \rightarrow H$ are Lie group homomorphisms such that $\Phi_{*}=\Psi_{*}: \mathfrak{g} \rightarrow \mathfrak{h}$, show that $\Phi=\Psi$.
2. (a) Use Gram-Schmidt to show that every matrix in $S L(n, \mathbb{C})$ can be uniquely expressed as $A=B C$, where $B \in S U(n)$ and C is in the subgroup of $S L(n, \mathbb{C})$ consisting of upper-triangular matrices with positive real entries on the diagonal.
(b) Show that $S L(2, \mathbb{C})$ is diffeomorphic to $S^{3} \times \mathbb{R}^{3}$ and hence is simply connected.
3. (a) Use Gram-Schmidt to show that every matrix in $S L(n, \mathbb{R})$ can be uniquely expressed as $A=B C$, where $B \in S O(n)$ and C is in the subgroup of $S L(n, \mathbb{R})$ consisting of upper-triangular matrices with positive entries on the diagonal.
(b) Show that $S L(2, \mathbb{R})$ is diffeomorphic to $S^{1} \times \mathbb{R}^{2}$.
(c) Show that the universal cover of $S L(2, \mathbb{R})$ has infinite cyclic center.
(Careful! What is the center of $S L(2, \mathbb{R})$ itself?)
4. (a) Prove that any matrix in $S L(2, \mathbb{R})$ is either:
(i) hyperbolic, with eigenvalues $\lambda_{1} \neq \lambda_{2} \in \mathbb{R}$;
(ii) parabolic, with eigenvalues $\lambda_{1}=\lambda_{2}= \pm 1$; or
(iii) elliptic, with eigenvalues $\lambda_{1}=\bar{\lambda}_{2} \in U(1) \backslash\{ \pm 1\}$.
(b) Show that $A \in S L(2, \mathbb{R})$ is in the image of the exponential map if and only if $\operatorname{tr} A>0, A$ is elliptic, or $A=-I$.
5. Let G be the universal covering group of $S L(2, \mathbb{R})$. Show that there is no faithful representation of G, that is, no injective homomorphism $\rho: G \rightarrow G L(n, \mathbb{R})$, as follows.
(a) Let $\rho_{*}: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{g l}(n, \mathbb{R})$ be the induced Lie algebra homomorphism, and show that $\phi: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathfrak{g l}(n, \mathbb{C})$ given by $\phi(A+i B)=\rho_{*}(A)+i \rho_{*}(B)$ is also a Lie algebra homomorphism.
(b) Show that there is a Lie group homomorphism $\Phi: S L(2, \mathbb{C}) \rightarrow G L(n, \mathbb{C})$ such that $\Phi_{*}=\phi$.
(c) Write down a diagram involving all five of the groups mentioned so far, show that it commutes, and use this to argue that ρ cannot be injective.
6. Let $N \subset M$ be an immersed submanifold, and let $X, Y \in V F(M)$ be such that for every $p \in N, X(p), Y(p) \in T_{p} N$. Show that then $[X, Y](p) \in T_{p} N$ as well.
7. If $F: M \rightarrow N$ is a submersion, show that the connected components of the level sets of F form a foliation of M.
8. Prove that for any finite-dimensional vector space V, the wedge product is the only binary operation $\Lambda^{p} V^{*} \times \Lambda^{q} V^{*} \rightarrow \Lambda^{p+q} V^{*}$ satisfying (i) bilinearity; (ii) associativity; (iii) anti-commutativity, i.e. $\omega \wedge \eta=(-1)^{p q} \eta \wedge \omega$; (iv) if p or $q=0$, it is scalar multiplication; and (v) if $\alpha_{1}, \ldots, \alpha_{k} \in \Lambda^{1} V^{*}=V^{*}$ and $v_{1}, \ldots, v_{k} \in V$, then

$$
\alpha_{1} \wedge \cdots \wedge \alpha_{k}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{det}\left(\alpha_{i}\left(v_{j}\right)\right)
$$

9. Show that for $X, Y \in V F(M), \omega \in \Omega^{k}(M)$,

$$
L_{X} i_{Y} \omega-i_{Y} L_{X} \omega=i_{[X, Y]} \omega .
$$

10. Show that for $X \in V F(M), \omega \in \Omega^{k}(M), f \in C^{\infty}(M)$,

$$
L_{f X} \omega=d f \wedge i_{X} \omega+f L_{X} \omega
$$

