Mathematics G4402x Modern Geometry

Assignment #4 Due October 28, 2013

1. Let M be \mathbb{R}^4 , regarded as the set of 2×2 matrices with real entries, and define an action of \mathbb{R} on M by

$$t \cdot A = \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array}\right) \cdot A.$$

Find the infinitesimal generator.

- **2.** Let $M = \mathbb{R}^n$ and consider vector fields $F : M \to \mathbb{R}^n$, $G : M \to \mathbb{R}^n$. Give an explicit formula for the Lie bracket $[F, G] : M \to \mathbb{R}^n$.
- **3.** Show that there are exactly two 2-dimensional Lie algebras up to isomorphism. Describe each of them as a subalgebra of $\mathfrak{gl}(2,\mathbb{R})$.
- 4. Suppose M is a manifold embedded in \mathbb{R}^N . Show that there is a natural, bijective correspondence between vector fields VF(M), as defined in class, and smooth maps $F: M \to \mathbb{R}^N$ such that for each $p \in M$, $F(p) \in T_pM \subset \mathbb{R}^N$.
- 5. Let $\gamma : (-a, b) \to M$ be an integral curve for the flow of $X \in VF(M)$. Recall that $\gamma'(t) := D_t \gamma(1)$.
 - (a) Show that either $\gamma'(t) = 0$ for all $t \in (-a, b)$ or $\gamma'(t) \neq 0$ for all $t \in (-a, b)$.
 - (b) Show that every nonconstant integral curve is an immersion.
- 6. If H is a Lie group and $F: G \to H$ a connected covering space (so that G is also a Lie group), show that the induced map $f: \mathfrak{g} \to \mathfrak{h}$ is an isomorphism of Lie algebras.
- 7. Let G be a Lie group.
 - (a) Compute the derivative at (e, e) of the multiplication $m: G \times G \to G$.
 - (b) Compute the derivative at e of the inversion $i: G \to G$.
 - (c) Show that G is abelian if and only if i is a homomorphism.
 - (d) Show that if G is abelian, then its Lie algebra \mathfrak{g} has zero bracket, [X, X] = 0.
 - (e) Give a counterexample to the converse statement.
- 8. The support of a vector field $X \in VF(M)$ is the closure of $\{p \in M | V(p) \neq 0\}$. If X has compact support, show that its flow is complete (that is, defined on all of $\mathbb{R} \times M$).
- **9.** Show that the group of diffeomorphisms acts transitively on any connected manifold: that is, for any $p, q \in M$ connected, there exists a diffeomorphism $f : M \to M$ such that f(p) = q. Hint: first show that, if p, q lie in an embedded open ball, there is a compactly supported flow taking p to q.