Mathematics G4402x Modern Geometry

Assignment #3 Due October 14, 2013

- **1.** The one-point compactification \overline{X} of a Hausdorff space X is the set $X \cup \{\infty\}$ with the topology whose open sets are the open subsets of X and those sets of the form $\{\infty\} \cup X \setminus C$ with $C \subset X$ compact. Show that a continuous map $f : X \to Y$ is proper if and only if it extends to a continuous map $\overline{f} : \overline{X} \to \overline{Y}$ with $\overline{f}(\infty) = \infty$.
- **2.** If G is a Lie group acting smoothly (but not necessarily properly) on a manifold M, show that the stabilizer group $G_x = \{g \in G \mid gx = x\}$ of any $x \in M$ is a closed embedded Lie subgroup.
- **3.** If $H \subset G$ is a closed embedded Lie subgroup which is normal in G, show that G/H is a Lie group and the projection $\pi : G \to G/H$ is a Lie group homomorphism. (The main issue is to show that multiplication and inversion are smooth.)
- 4. If $\phi : G_1 \to G_2$ is a smooth homomorphism of Lie groups (not necessarily proper), show that ker ϕ is a closed embedded Lie subgroup. If ϕ is also surjective, show that there is an isomorphism of Lie groups $G_2 \cong G_1/\ker \phi$.
- 5. Show that \mathbf{CP}^1 is diffeomorphic to S^2 . Hint: express both as homogeneous spaces. Considerably harder for extra credit: show that \mathbf{HP}^1 is diffeomorphic to S^4 .
- 6. Let $\operatorname{Fl}_k(\mathbb{C}^n)$ be the set of all *k*-flags in \mathbb{C}^n , that is, ordered *k*-tuples of mutually orthogonal 1-dimensional complex subspaces of \mathbb{C}^n . Show that U(n) acts transitively on $\operatorname{Fl}_k(\mathbb{C}^n)$ and determine the stabilizer group of $(\langle e_1 \rangle, \ldots \langle e_k \rangle)$. With what homogeneous space can $\operatorname{Fl}_k(\mathbb{C}^n)$ be identified? What is its dimension? Show that $\operatorname{Fl}_k(\mathbb{C}^n)$ admits a smooth surjection to $\operatorname{Gr}_k(\mathbb{C}^n)$. What are the fibers of this map?
- 7. Show that any injective Lie group homomorphism of compact connected Lie groups of the same dimension must be an isomorphism.
- 8. Show that there is an embedding $\mathbf{Z}_n \subset SU(n) \times U(1)$ such that

$$\frac{SU(n) \times U(1)}{\mathbf{Z}_n} \cong U(n).$$