Mathematics G4402x Modern Geometry

Assignment #2 Due September 30, 2013

1. (a) Show that a continuous injection $f: M \to N$ of topological spaces is a homeomorphism onto its image if and only if $U \subset M$ open implies $f(U) \subset f(N)$ open in the subspace topology.

(b) If $f: M \to N$ is an injective immersion of manifolds with M compact, show that f is an embedding.

2. (a) Show that any submersion is an open map, i.e. U open implies f(U) open.

(b) Show that any regular k-dimensional submanifold of a k-dimensional manifold must be an open subset.

- **3.** If $N \subset M$ is a closed injectively immersed submanifold, not necessarily regular, show that the restriction map $C^{\infty}(M) \to C^{\infty}(N)$ on smooth functions need not be surjective. (We will later prove that it is surjective if N is regular.)
- 4. If $\pi : M \to N$ is a smooth map of manifolds with M compact, N connected, and $D_x f$ an isomorphism for all $x \in M$, prove that π is a covering map. Give a counterexample if M is not compact.
- 5. Regard \mathbb{RP}^2 as the quotient space of S^2 obtained by identifying antipodal points. Define $F : \mathbb{R}^3 \to \mathbb{R}^4$ by $F(x, y, z) = (x^2 - y^2, xy, xz, yz)$. Since F(v) = F(-v), this gives a well-defined map $\tilde{F} : \mathbb{RP}^2 \to \mathbb{R}^4$. Show that this is an embedding.
- **6.** Let S(n) be the set of symmetric $n \times n$ real matrices.

(a) Show that S(n) is a real vector space of dimension n(n+1)/2, and that the map $f: GL(n, \mathbb{R}) \to S(n)$ given by $f(A) = A^T A$ is a submersion.

(b) Show that $O(n) = \{A \in GL(n, \mathbb{R}) \mid A^T A = I\}$ is a compact Lie group of dimension n(n-1)/2.

7. (a) Let $GL^+(n,\mathbb{R}) = \{A \in GL(n,\mathbb{R}) \mid \det A > 0\}$. Show that $GL^+(n,\mathbb{R})$ is pathconnected, hence connected. Hint: consider the elementary row operations.

(b) Show that $SO(n) = O(n) \cap GL^+(n, \mathbb{R})$ is connected. Hint: apply Gram-Schmidt to a path.

8. If S is any subset of a group G, let $S^2 = \{gh \mid g, h \in S\}$. If U is a neighborhood of the identity e in a Lie group G, show that there is another neighborhood V of e such that $V^2 \subset U$.