Mathematics G4403y
 Modern Geometry

Assignment \#14

Due May 7, 2014

1. Let $E \rightarrow M$ be a complex vector bundle, $L \rightarrow M$ a complex line bundle.
(a) If $\tilde{E}=E \otimes L$, show that there is a natural diffeomorphism $\mathbb{P} \tilde{E} \simeq \mathbb{P} E$, in terms of which the relevant tautological line bundles satisfy $\tilde{T} \cong T \otimes \pi^{*} L$.
(b) Deduce from (a) a formula for the Chern classes of $E \otimes L$ in terms of those of E and L. What does it boil down to if the rank of E is 2 ?
2. For $n>1$, consider the embedding $I: \mathbb{C P}^{1} \rightarrow \mathbb{C P}{ }^{n}$ given by $[x, y] \mapsto\left[x^{n}, x^{n-1} y, \ldots, y^{n}\right]$. (a) If h denotes the usual generator of $H^{2}\left(\mathbb{C P}^{n}\right)$ (i.e. the Poincaré dual of $\mathbb{C P}^{n-1}$) show that $I^{*} h=n h$. Hint: wedge product is Poincaré dual to transverse intersection.
(b) Show that $I^{*} T \mathbb{C P} \mathbb{P}^{n}$ and $N_{\mathbb{C P}^{1} / \mathbb{C P}^{n}}$ are nontrivial as complex vector bundles.
3. Let V be a finite-dimensional complex vector space, $\mathbb{P} V$ the set of its one-dimensional complex subspaces. Let the incidence correspondence be

$$
I=\left\{([v],[f]) \in \mathbb{P} V \times \mathbb{P} V^{*} \mid f(v)=0\right\}
$$

Show that I is a smooth manifold and determine its Betti numbers. In fact, give generators and relations for $H^{*}(I)$ as an algebra over the real numbers.
4. If $E, \tilde{E} \rightarrow M$ are complex vector bundles of ranks r, \tilde{r}, use the Chern-Weil definition of Chern classes to show that $c_{1}(E \otimes \tilde{E})=\tilde{r} c_{1}(E)+r c_{1}(\tilde{E})$.
5. (a) Show that the Grassmannian $\mathrm{Gr}_{k} \mathbb{C}^{n}$ of k-dimensional subspaces of \mathbb{C}^{n} is a complex manifold and express the complex vector bundle $T \mathrm{Gr}_{k} \mathbb{C}^{n}$ in terms of the tautological rank k vector bundle $E \rightarrow \operatorname{Gr}_{k} \mathbb{C}^{n}$. Use this to show that $T \mathrm{Gr}_{k} \mathbb{C}^{n}$ is nontrivial (e.g., by restricting to a projective space),
(b) Show that every vector field on the Grassmannian must have a zero. Use this to give another proof that $T \mathrm{Gr}_{k} \mathbb{C}^{n}$ is nontrivial.
6. If $E, \tilde{E} \rightarrow M$ are real oriented vector bundles, define an orientation on $E \oplus \tilde{E}$ and show that $e(E \oplus \tilde{E})=e(E) e(\tilde{E})$. Also express $e(\tilde{E} \oplus E)$ in terms of $e(E \oplus \tilde{E})$.
7. For a finite-dimensional complex vector space V, recall that $\Lambda^{n} V$ is the space of alternating multilinear maps $V^{*} \times \cdots \times V^{*} \rightarrow \mathbb{C}$. For a rank n complex vector bundle $E \rightarrow M$, let $\Lambda^{n} E$ be the associated complex line bundle.
(a) If $E=L_{1} \oplus \cdots \oplus L_{n}$, show that $\Lambda^{n} E \cong L_{1} \otimes \cdots \otimes L_{n}$.
(b) Use the splitting principle to prove that $c_{1}(E)=c_{1}\left(\Lambda^{n} E\right)$.
8. (a) Show that there is no immersion $\mathbb{C P}^{3} \rightarrow \mathbb{R}^{7}$.
(b) Show that there is no immersion $\mathbb{C P}^{5} \rightarrow \mathbb{R}^{13}$.
9. Let $E \rightarrow M$ be a real vector bundle with connection ∇, and let $\nabla^{k}: \Omega^{k}(M, E) \rightarrow$ $\Omega^{k+1}(M, E)$ be its extension to bundle-valued forms, as in the lecture.
(a) Show that for all $k, \nabla^{k+1} \circ \nabla^{k}=\wedge F_{\nabla}$.
(b) Show that $\Omega^{0}(M, E) \xrightarrow{\nabla^{0}} \Omega^{1}(M, E) \xrightarrow{\nabla^{1}} \Omega^{2}(M, E) \xrightarrow{\nabla^{2}} \Omega^{3}(M, E) \cdots$ is a complex if and only if ∇ is flat, that is, has zero curvature.
(c) If so, define its cohomology to be the de Rham cohomology with local coefficients in E, denoted $H^{k}(M, E)$, and compute this for the flat connection on the Möbius strip (regarded as a line bundle over the circle) with holonomy -1 . Hint: compute with differential forms on the universal cover.

