Mathematics G4403y Modern Geometry

Assignment #13 Due April 23, 2014

1. (a) Homotopy invariance of degree: if M, N are compact and oriented of the same dimension, and if $f, g: M \to N$ are (smoothly) homotopic, show that deg $f = \deg g$.

(b) A manifold M is said to be *parallelizable* if TM is trivial. In lecture, Poincaré-Hopf was used to show that S^n is not parallelizable for even n > 0. Reprove the same statement as follows. If S^n admits a vector field which is nowhere zero, show that the identity map on S^n is homotopic to the antipodal map $(x_0, \ldots, x_n) \mapsto (-x_0, \ldots, -x_n)$. For n even show that this map is also homotopic to the reflection $(x_0, \ldots, x_n) \mapsto (-x_0, \ldots, x_n) \mapsto (-x_0, x_1, \ldots, x_n)$. Then use (a).

- (c) If n is odd, show that S^n admits a vector field which is nowhere zero.
- (d) Show that any Lie group is parallelizable.
- (e) Show that S^0 , S^1 , and S^3 are parallelizable.

Remark: more advanced methods show that S^n is parallelizable if and only if n = 0, 1, 3, or 7. See e.g. Milnor, Annals of Math. 68: 444.

- 2. (a) Let E, E be rank n vector bundles on M, trivialized on the same open cover U_i, with transition functions f_{ij} and f̃_{ij}: U_{ij} → GL(n, ℝ) respectively. Show that Ẽ ≅ E if and only if there exist smooth g_i: U_i → GL(n, ℝ) so that on each U_{ij}, f̃_{ij} = g_jf_{ij}g_i.
 (b) Define the Möbius bundle on S¹ = {z ∈ C | |z| = 1} to be the rank 1 vector bundle trivialized on U₁ = S¹ \ {1} and U₂ = S¹ \ {-1} with transition function f₁₂(z) = Imz/|Imz|. Show that if S¹ is identified with ℝP¹ in the usual way, then the Möbius bundle is isomorphic to the tautological line bundle.
- **3.** (a) Show that the Möbius bundle is nontrivial.

(b) Show that the tautological line bundle on \mathbb{RP}^n is nontrivial for all n.

- **4.** Let $E \to M$ be a vector bundle, $s \in \Gamma(E)$ a nowhere vanishing section. Show that there is a connection ∇ on E with $\nabla s = 0$. Does this remain true if s has a zero? Why or why not?
- 5. If $E \to M$ is a vector bundle with connection ∇ , $g : N \to M$ a smooth map, show that $F_{g^*\nabla} = g^* F_{\nabla} \in \Omega^2(N, g^* E)$.

CONTINUED OVERLEAF...

- 6. Regard $\mathbb{R}^n \times \mathbb{R}$ as a trivial rank 1 vector bundle over \mathbb{R}^n , and let a connection on this bundle be defined by d + A for $A \in \Omega^1(\mathbb{R}^n)$. Let $\gamma : [a, b] \to \mathbb{R}^n$ be a embedding with image C. Show that the parallel transport from $\gamma(a)$ to $\gamma(b)$ along C is multiplication by $\exp \int_C A$.
- 7. Let $E \to M$ be a rank *n* vector bundle on a connected manifold with connection ∇ , $p \in M$ a basepoint. Choose an isomorphism $E_p \cong \mathbb{R}^n$ and define the *holonomy* of ∇ around a loop ℓ based at *p* to be the matrix representation of the parallel transport $E_x \to E_x$ along ℓ .

(a) Show that the set of holonomies around all loops based at p is a subgroup of $GL(n, \mathbb{R})$.

(b) If q is another basepoint, show that the holonomy subgroup there is conjugate to that at p.

8. (a) Show that every (real) vector bundle is isomorphic to its dual.

(b) If E is a complex vector bundle, let the *conjugate bundle* E be the same real manifold, but with every local trivialization ψ_i replaced by its composition with the map $\mathbb{C}^n \to \mathbb{C}^n$ given by $(z_1, \ldots, z_n) \mapsto (\bar{z}_1, \ldots, \bar{z}_n)$. Show that $\bar{E} \cong E^*$.

(c) Show, however, that a complex vector bundle need not be isomorphic to its dual.

9. (a) Show that the Euler class of a complex line bundle does not depend on the choice of a Hermitian structure.

(b) If L, L' are complex line bundles over M, show that $e(L \otimes L) = e(L) + e(L')$ and $e(L^*) = -e(L)$.