Mathematics G4403y
 Modern Geometry

Assignment \#11

Due March 26, 2014
In what follows, M always denotes a Riemannian manifold with its Levi-Civita connection.

1. (a) In \mathbb{R}^{2}, show that the graph $y=f(x)$, oriented upward, has curvature

$$
\kappa(x)=\frac{\ddot{f}}{\left(1+\dot{f}^{2}\right)^{3 / 2}} .
$$

(Dots always denote derivatives with respect to t.)
(b) In \mathbb{R}^{3}, compute the second fundamental form of the graph $z=f(x, y)$ in terms of the isomorphism $T_{p} M \rightarrow \mathbb{R}^{2}$ given by projection on the horizontal.
(c) Extract formulas for the Gaussian and mean curvature of the graph M.
(d) Verify that the helicoid $z=x \tan y$ is a minimal surface.
2. (a) Show that any surface of revolution $M \subset \mathbb{R}^{3}$ can be parametrized by

$$
(a(t) \cos \theta, a(t) \sin \theta, b(t))
$$

with $\dot{a}^{2}+\dot{b}^{2}=1$.
(b) Show that the Gaussian curvature of M is $-\ddot{a} / a$.
(c) Describe a surface of revolution in \mathbb{R}^{3} that has constant Gaussian curvature 1 but does not have constant mean curvature.
3. Let $S \subset \mathbb{R}^{n}$ be an open set, $F: S \rightarrow \mathbb{R}$ a submersion, and $M=F^{-1}(0)$. Show that the second fundamental form is given by

$$
I I(V, W)=-\sum_{i, j} \frac{V^{i} W^{j} \partial_{i} \partial_{j} F}{|\nabla F|^{2}} \nabla F
$$

where $V=\sum_{i} V^{i} \partial_{i}, W=\sum_{j} W^{j} \partial_{j}$, and ∇F is the classical gradient.
4. (a) Show that if two (4,0)-tensors have the symmetries of the Riemann curvature tensor and agree on expressions of the form (X, Y, Y, X), then they are equal.
(b) Suppose that M has constant sectional curvature K. Show that the Riemann curvature tensor is given in coordinates by

$$
R=K \sum_{i, j, k, l}\left(g_{i l} g_{j k}-g_{i k} g_{j l}\right) d x_{i} \otimes d x_{j} \otimes d x_{k} \otimes d x_{l}
$$

5. (a) Let G be a Lie group with a bi-invariant metric, X, Y, Z left-invariant vector fields. Show that $R(X, Y) Z=-\frac{1}{4}[[X, Y], Z]$.
(b) Show that any Lie subgroup of G is totally geodesic.
(c) Show that the sectional curvatures of G are all nonnegative: indeed, if X and Y are an orthonormal basis for U, show that $K(U)=\frac{1}{4}|[X, Y]|^{2}$.
(d) If G is connected, show that it is flat if and only if it is abelian.
6. Show that the usual diffeomorphism $S U(2) \rightarrow S^{3}$ takes the bi-invariant metric to the round metric.
7. (a) If M is connected, show that an isometry $f: M \rightarrow N$ is determined by its value and derivative at any point. That is, if another isometry \tilde{f} satisfies $\tilde{f}(p)=f(p)$ and $D_{p} \tilde{f}=D_{p} f$, then $\tilde{f}=f$.
(b) Let M be a connected n-dimensional manifold on which a Lie group G acts by isometries, with no element besides e acting as the identity. Show that $\operatorname{dim} G \leq$ $n(n+1) / 2$, with equality only if M is of constant sectional curvature. Give examples where equality holds.
