Mathematics G4403y Modern Geometry

Assignment #10 Due March 5, 2014

0. (Optional for extra credit)

(a) Let M be a smooth manifold, $X \in VF(M)$. Show that there exists a positive smooth $f: M \to \mathbb{R}$ so that the flow of fX is globally defined.

(b) An open $U \subset \mathbb{R}^n$ is *star-shaped* if there exists $\mathbf{p} \in U$ so that for all $\mathbf{q} \in U$, the line segment from \mathbf{p} to \mathbf{q} is contained in U. Prove that any star-shaped set is diffeomorphic to \mathbb{R}^n . Hint: if $X(\mathbf{q}) = \mathbf{q} - \mathbf{p}$, for a suitably chosen f, construct a diffeomorphism taking the flow of fX to the flow of X.

In the remaining problems, M always denotes a Riemannian manifold with its Levi-Civita connection.

1. A subset S of M is (geodesically) convex if for each $p, q \in S$, there is a minimizing geodesic, unique in M, lying wholly in S. Show that every point p has an open convex neighborhood, as follows.

(a) Let V be a totally normal neighborhood. For ε small enough that $\exp_p B_{3\varepsilon}(0) \subset V$, define $W_{\varepsilon} = \{(q, v) \in TM \mid d(p, q) < \varepsilon, v \in T_q M, |v| = 1\}$ and let $f: W_{\varepsilon} \times (-2\varepsilon, 2\varepsilon) \to \mathbb{R}$ be given by

$$f(q, v, t) = d(\exp_q tv, p)^2$$

Show that f is smooth. Hint: although d is not smooth in general (even on a circle), you can calculate in normal coordinates centered at p.

(b) Show that for small enough ε , $\partial^2 f/\partial t^2 > 0$ on $W_{\varepsilon} \times (-2\varepsilon, 2\varepsilon)$. Hint: calculate f(p, v, t) explicitly.

(c) If $q_1, q_2 \in \exp_p B_{\varepsilon}(0)$ and γ is a minimizing geodesic from q_1 to q_2 , show that $d(\gamma(t), p)$ attains its maximum at one of the endpoints.

- (d) Show that $\exp_n B_{\varepsilon}(0)$ is convex.
- 2. (a) Show that the intersection of convex sets (in the sense above) is convex.
 - (b) Use problem **0** to show that an open convex set is diffeomorphic to \mathbb{R}^n .
 - (c) Prove the result promised last semester: every smooth manifold has a good cover.

CONTINUED OVERLEAF...

- **3.** (a) Let $\Gamma : [0,1] \times [0,1] \to M$ be a smooth map, and let $\gamma_u(v) = \Gamma(u,v)$. If γ_0 is a geodesic, $\Gamma(u,0) = p$, and $\Gamma(u,1) = q$, show that the "first variation" $\frac{d}{du}\ell(\gamma_u)|_{u=0} = 0$.
 - (b) Give an example to show that this is false if $\Gamma(u, 0)$ or $\Gamma(u, 1)$ are not constant.

(c) Now let $\Gamma : [0,1] \times S^1 \to M$ be a smooth map, $\gamma_u(v) = \Gamma(u,v)$, such that γ_0 is a (closed) geodesic. Show that $\frac{d}{du}\ell(\gamma_u)|_{u=0} = 0$. Notice that there are no constraints on any $\Gamma(u, v_0)$.

- **4.** Let $M \subset \mathbb{R}^3$ be a surface of revolution, parametrized by $(t, \theta) \mapsto (a(t) \cos \theta, a(t) \sin \theta, b(t))$.
 - (a) Compute the metric elements in (t, θ) coordinates.
 - (b) Compute the Christoffel symbols in (t, θ) coordinates.
 - (c) Show that each meridian $\theta = \theta_0$ is a geodesic.
 - (d) Give necessary and sufficient conditions for a *latitude* $t = t_0$ to be a geodesic.
- **5.** A divergent curve in M is a smooth map $\gamma : [0, \infty) \to M$ which eventually leaves any compact set $C \subset M$, that is, there exists t_C so that $t > t_C$ implies $\gamma(t) \notin C$. Show that M is complete if and only if all divergent curves have infinite arclength.
- 6. Show that a homogeneous space M = G/H on which G acts by isometries is complete.
- 7. Let G be a Lie group equipped with a bi-invariant metric, \mathfrak{g} its Lie algebra of left-invariant vector fields.
 - (a) For any $X, Y, Z \in \mathfrak{g}$, show that

$$\langle [X,Y],Z\rangle = -\langle Y,[X,Z]\rangle.$$

Hint: let $\gamma(t)$ be the flow of X from the identity, let $\operatorname{Ad}_g : G \to G$ be $\operatorname{Ad}_g(h) = ghg^{-1}$, and compute $\frac{d}{dt} \langle \operatorname{Ad}_{\gamma(t)} Y, \operatorname{Ad}_{\gamma(t)} Z \rangle$.

(b) Show that $\nabla_X Y = \frac{1}{2}[X, Y].$

(c) Show that the geodesics through the identity are precisely the one-parameter subgroups, and that arbitrary geodesics are (right or left) translates of one-parameter subgroups.

- (d) Show that exp = exp, i.e. the Lie and Riemannian exponential maps coincide.
- (e) Show that $SL(2,\mathbb{R})$ cannot admit a bi-invariant metric.