Mathematics G4402x Modern Geometry

Assignment #1 Due September 16, 2013

- 1. Show that a topological manifold is path-connected if and only if it is connected.
- **2.** (Real projective space)

(a) Show that there exists a homeomorphism $f : \mathbb{R}^{n+1} \setminus \{0\} \to S^n \times \mathbb{R}$ so that the diagram below commutes:

$$\begin{array}{ccc} \mathbb{R}^{n+1} \setminus \{0\} & \xrightarrow{f} & S^n \times \mathbb{R} \\ \pi \downarrow & & \downarrow^p \\ \mathbb{R}\mathbb{P}^n & \xleftarrow{\pi|_{S^n}} & S^n \end{array}$$

Here π is the quotient map and p is projection on the first factor.

- (b) Characterize the inverse image in $S^n \times \mathbb{R}$ of an open set in \mathbb{RP}^n .
- (c) Use this to show that \mathbb{RP}^n is Hausdorff, second countable, and compact.
- 3. Show that compositions of smooth maps of manifolds are smooth.
- 4. (Bump functions)
 - (a) The following function $f : \mathbb{R} \to \mathbb{R}$ is smooth:

$$f(x) = \begin{cases} e^{-1/x^2} & x > 0\\ 0 & x \le 0 \end{cases}$$

(b) There exists a smooth $g : \mathbb{R} \to \mathbb{R}$ such that g(x) > 0 if $x \in (-1, 1)$ but g(x) = 0 otherwise.

(c) There exists a smooth $h : \mathbb{R} \to [0, 1]$ such that h(x) = 0 if $x \leq 0$ but h(x) = 1 if $x \geq 1$. Hint: integrate.

(d) For any $\varepsilon > 0$, there exists a smooth $\psi : \mathbb{R}^n \to [0, 1]$ such that $\psi(x) = 0$ if $|x| \ge 2\varepsilon$ but $\psi(x) = 1$ if $|x| \le \varepsilon$.

(e) If M is a smooth manifold, $p \in U$ open in M, there exists a smooth $\phi : M \to \mathbb{R}$ such that $\phi(x) = 0$ if $x \notin U$ but $\phi(x) = 1$ on some neighborhood V of p.

CONTINUED OVERLEAF...

- 5. (Stereographic projection) Let $U_{-} = S^2 \setminus \{(0,0,1)\}$, and define $\phi_{-} : U_{-} \to \mathbb{R}^2$ by $\phi_{-}(x, y, z) = (\bar{x}, \bar{y})$, where $(\bar{x}, \bar{y}, 0)$ is the unique point with third coordinate zero on the line through (x, y, z) and (0, 0, 1). Let $U_{+} = S^2 \setminus \{(0, 0, -1)\}$ and define ϕ_{+} similarly. (See the diagrams on p. 59 of Boothby or p. 29 of Lee.) Give explicit formulas for ϕ_{-} and ϕ_{+} and show that they are homeomorphisms defining compatible charts and hence a smooth structure on S^2 . (Extra credit: generalize to S^n .)
- **6.** For $M \xrightarrow{\phi} N \xrightarrow{\psi} P$ smooth maps of manifolds, show that push-forward is covariant: $(\psi \circ \phi)_* = \psi_* \circ \phi_*$.
- 7. Show that if a nonempty *m*-manifold is diffeomorphic to an *n*-manifold, then m = n.