Mathematics G4402x
 Modern Geometry

Answers to Final Exam

December 16, 2013

1. Let $F=\left(F_{1}, \ldots, F_{n}\right)$. Since M is nonempty and compact, $F_{1} \in C^{\infty}(M)$ takes a maximum, say at $p \in M$. Let $\phi: U \rightarrow V$ be a chart with $\phi(p)=0$ and let $G=F \circ \phi^{-1}$; then $G_{1}=F_{1} \circ \phi^{-1}: V \rightarrow \mathbf{R}$ has $\partial G_{1} / \partial x_{i}=0$ at 0 for all i, so $D_{0} G$ is singular, hence so is $D_{p} F$ by the chain rule.
2. If Y belongs to $T_{p} N$ and f vanishes on N, then $Y f=Y\left(\left.f\right|_{N}\right)=Y 0=0$. Conversely, if $Y f=0$ for every f vanishing on N, choose a slice chart $\phi: U \rightarrow V$ so that $\phi(p)=0$ and $\phi(N)=\left(\mathbf{R}^{n} \times 0\right) \cap V$. Let ψ be a bump function compactly supported on V with $\psi=1$ near 0 , and let $x_{i}: V \rightarrow \mathbf{R}$ be the i th coordinate function. Then $\left(x_{i} \psi\right) \circ \phi$ extends to a smooth function $f_{i}: M \rightarrow \mathbf{R}$ vanishing on N when $i>n$, so if $\phi_{*} Y=\sum a_{i} \partial / \partial x_{i}$, we have $0=Y f_{i}=\left(\phi_{*} Y\right)\left(x_{i} \psi\right)=a_{i}$ when $i>n$, that is, $\phi_{*} Y \in T_{0}\left(\mathbf{R}^{n} \times 0\right)$ and hence $Y \in T_{p} N$.
3. $L_{X} L_{Y} Z-L_{Y} L_{X} Z=[X,[Y, Z]]-[Y,[X, Z]]=[X,[Y, Z]]+[Y,[Z, X]]=-[Z,[X, Y]]=$ $[[X, Y], Z]=L_{[X, Y]} Z$, where the third equality is the Jacobi identity.
4. If k is odd, then $\nu^{2}=(-1)^{k^{2}} \nu^{2}=0$, so $\nu^{n}=0$ and $L_{X}\left(\nu^{n}\right)=0$. But if k is even, since L_{X} is a derivation, $L_{X}(\nu \wedge \nu)=L_{X} \nu \wedge \nu+\nu \wedge L_{X} \nu=\left((-1)^{k^{2}}+1\right) \nu \wedge L_{X} \nu=2 \nu \wedge L_{X} \nu$. Assume it for n by induction; then $L_{X}\left(\nu^{n+1}\right)=L_{X}\left(\nu^{n} \wedge \nu\right)=n \nu^{n-1} \wedge L_{X} \nu \wedge \nu+$ $\nu^{n} \wedge L_{X} \nu=\left((-1)^{k^{2}} n+1\right) \nu^{n} \wedge L_{X} \nu=(n+1) \nu^{n} \wedge L_{X} \nu$.
5. We may assume $\mathbf{u} \in \mathbf{R}^{3} \backslash 0$. There, both X and Y are along the field of planes tangent to the spheres centered at 0 ; this plane field is integrable, hence involutive, so Z is also along it.
6.

$$
\begin{aligned}
\chi(M \times N) & =\sum_{k}(-1)^{k} \operatorname{dim} H^{k}(M \times N) \\
& =\sum_{k}(-1)^{k} \operatorname{dim} \bigoplus_{i+j=k} H^{i}(M) \otimes H^{j}(N) \\
& =\sum_{k}(-1)^{k} \sum_{i+j=k} \operatorname{dim} H^{i}(M) \operatorname{dim} H^{j}(N) \\
& =\sum_{k} \sum_{i+j=k}(-1)^{i+j} \operatorname{dim} H^{i}(M) \operatorname{dim} H^{j}(N) \\
& =\left(\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(M)\right)\left(\sum_{j}(-1)^{j} \operatorname{dim} H^{j}(N)\right) \\
& =\chi(M) \chi(N)
\end{aligned}
$$

7. Let v_{1}, \ldots, v_{n} be a basis for $T_{e} G, v^{1}, \ldots, v^{n}$ the dual basis, let $\phi_{g}: G \rightarrow G$ be left multiplication by g, and let $\omega \in \Omega^{n}(G)$ be given by $\omega_{g}:=\phi_{g^{-1}}^{*} v^{1} \wedge \cdots \wedge v^{n}$. This is a smooth form, as on the corresponding left-invariant vector fields X_{i} we have $\omega\left(X_{1}, \ldots, X_{n}\right)=1$, the constant function, hence $\omega\left(V_{1}, \ldots, V_{n}\right)$ is smooth for arbitrary $V_{i} \in \operatorname{VF}(G)$, which must be C^{∞} linear combinations of X_{1}, \ldots, X_{n}. But it is also nowhere vanishing, so G is orientable.
8. Since $\operatorname{dim} \mathfrak{g}=\operatorname{dim} G>0$, there exists a nonzero left-invariant vector field, which is nowhere vanishing, and also G is orientable by the previous problem, so $\chi(G)=0$ by the Poincaré-Hopf Index Theorem.
