1. Let \(F = (F_1, \ldots, F_n) \). Since \(M \) is nonempty and compact, \(F_1 \in C^\infty(M) \) takes a maximum, say at \(p \in M \). Let \(\phi : U \to V \) be a chart with \(\phi(p) = 0 \) and let \(G = F \circ \phi^{-1} \); then \(G_1 = F_1 \circ \phi^{-1} : V \to \mathbf{R} \) has \(\partial G_1 / \partial x_i = 0 \) at \(p \) for all \(i \), so \(D_0 G \) is singular, hence so is \(D_p F \) by the chain rule.

2. If \(Y \) belongs to \(T_p N \) and \(f \) vanishes on \(N \), then \(Y f = Y(f|_N) = Y 0 = 0 \). Conversely, if \(Y f = 0 \) for every \(f \) vanishing on \(N \), choose a slice chart \(\phi : U \to V \) so that \(\phi(p) = 0 \) and \(\phi(N) = (\mathbf{R}^n \times 0) \cap V \). Let \(\psi \) be a bump function compactly supported on \(V \) with \(\psi = 1 \) near \(0 \), and let \(x_i : V \to \mathbf{R} \) be the \(i \)-th coordinate function. Then \((x_i \psi) \circ \phi \) extends to a smooth function \(f_i : M \to \mathbf{R} \) vanishing on \(N \) when \(i > n \), so if \(\phi_* Y = \sum a_i \partial / \partial x_i \), we have \(0 = Y f_i = (\phi_* Y)(x_i \psi) = a_i \) when \(i > n \), that is, \(\phi_* Y \in T_0(\mathbf{R}^n \times 0) \) and hence \(Y \in T_p N \).

4. If \(k \) is odd, then \(\nu^2 = (-1)^k \nu^2 = 0 \), so \(\nu^n = 0 \) and \(L_X(\nu^n) = 0 \). But if \(k \) is even, since \(L_X \) is a derivation, \(L_X(\nu \wedge \nu) = L_X \nu \wedge \nu + \nu \wedge L_X \nu = ((-1)^k + 1)\nu \wedge L_X \nu = 2\nu \wedge L_X \nu \). Assume it for \(n \) by induction; then \(L_X(\nu^{n+1}) = L_X(\nu^n \wedge \nu) = n\nu^{n-1} \wedge L_X \nu \wedge \nu + \nu^n \wedge L_X \nu = ((-1)^k n + 1) \nu^n \wedge L_X \nu = (n+1) \nu^n \wedge L_X \nu \).

5. We may assume \(u \in \mathbf{R}^3 \setminus 0 \). There, both \(X \) and \(Y \) are along the field of planes tangent to the spheres centered at \(0 \); this plane field is integrable, hence involutive, so \(Z \) is also along it.

6.

\[
\chi(M \times N) = \sum_k (-1)^k \dim H^k(M \times N)
\]

\[
= \sum_k (-1)^k \left(\bigoplus_{i+j=k} H^i(M) \otimes H^j(N) \right)
\]

\[
= \sum_k (-1)^k \sum_{i+j=k} \dim H^i(M) \dim H^j(N)
\]

\[
= \sum_k \sum_{i+j=k} (-1)^{i+j} \dim H^i(M) \dim H^j(N)
\]

\[
= \left(\sum_i (-1)^i \dim H^i(M) \right) \left(\sum_j (-1)^j \dim H^j(N) \right)
\]

\[
= \chi(M) \chi(N).
\]
7. Let \(v_1, \ldots, v_n \) be a basis for \(T_eG \), \(v^1, \ldots, v^n \) the dual basis, let \(\phi_g : G \to G \) be left multiplication by \(g \), and let \(\omega \in \Omega^n(G) \) be given by \(\omega_g := \phi_g^* v^1 \wedge \cdots \wedge v^n \). This is a smooth form, as on the corresponding left-invariant vector fields \(X_i \) we have \(\omega(X_1, \ldots, X_n) = 1 \), the constant function, hence \(\omega(V_1, \ldots, V_n) \) is smooth for arbitrary \(V_i \in VF(G) \), which must be \(C^\infty \) linear combinations of \(X_1, \ldots, X_n \). But it is also nowhere vanishing, so \(G \) is orientable.

8. Since \(\dim g = \dim G > 0 \), there exists a nonzero left-invariant vector field, which is nowhere vanishing, and also \(G \) is orientable by the previous problem, so \(\chi(G) = 0 \) by the Poincaré-Hopf Index Theorem.