Mathematics G4402x Modern Geometry

Answers to Final Exam December 16, 2013

- **1.** Let $F = (F_1, \ldots, F_n)$. Since M is nonempty and compact, $F_1 \in C^{\infty}(M)$ takes a maximum, say at $p \in M$. Let $\phi : U \to V$ be a chart with $\phi(p) = 0$ and let $G = F \circ \phi^{-1}$; then $G_1 = F_1 \circ \phi^{-1} : V \to \mathbf{R}$ has $\partial G_1 / \partial x_i = 0$ at 0 for all i, so $D_0 G$ is singular, hence so is $D_p F$ by the chain rule.
- 2. If Y belongs to T_pN and f vanishes on N, then $Yf = Y(f|_N) = Y0 = 0$. Conversely, if Yf = 0 for every f vanishing on N, choose a slice chart $\phi : U \to V$ so that $\phi(p) = 0$ and $\phi(N) = (\mathbf{R}^n \times 0) \cap V$. Let ψ be a bump function compactly supported on V with $\psi = 1$ near 0, and let $x_i : V \to \mathbf{R}$ be the *i*th coordinate function. Then $(x_i\psi)\circ\phi$ extends to a smooth function $f_i : M \to \mathbf{R}$ vanishing on N when i > n, so if $\phi_*Y = \sum a_i \partial/\partial x_i$, we have $0 = Yf_i = (\phi_*Y)(x_i\psi) = a_i$ when i > n, that is, $\phi_*Y \in T_0(\mathbf{R}^n \times 0)$ and hence $Y \in T_pN$.
- **3.** $L_X L_Y Z L_Y L_X Z = [X, [Y, Z]] [Y, [X, Z]] = [X, [Y, Z]] + [Y, [Z, X]] = -[Z, [X, Y]] = [[X, Y], Z] = L_{[X,Y]}Z$, where the third equality is the Jacobi identity.
- 4. If k is odd, then $\nu^2 = (-1)^{k^2} \nu^2 = 0$, so $\nu^n = 0$ and $L_X(\nu^n) = 0$. But if k is even, since L_X is a derivation, $L_X(\nu \wedge \nu) = L_X \nu \wedge \nu + \nu \wedge L_X \nu = ((-1)^{k^2} + 1)\nu \wedge L_X \nu = 2\nu \wedge L_X \nu$. Assume it for n by induction; then $L_X(\nu^{n+1}) = L_X(\nu^n \wedge \nu) = n\nu^{n-1} \wedge L_X \nu \wedge \nu + \nu^n \wedge L_X \nu = ((-1)^{k^2} n + 1)\nu^n \wedge L_X \nu = (n+1)\nu^n \wedge L_X \nu$.
- 5. We may assume $\mathbf{u} \in \mathbf{R}^3 \setminus 0$. There, both X and Y are along the field of planes tangent to the spheres centered at 0; this plane field is integrable, hence involutive, so Z is also along it.

6.

$$\begin{split} \chi(M \times N) &= \sum_{k} (-1)^{k} \dim H^{k}(M \times N) \\ &= \sum_{k} (-1)^{k} \dim \bigoplus_{i+j=k} H^{i}(M) \otimes H^{j}(N) \\ &= \sum_{k} (-1)^{k} \sum_{i+j=k} \dim H^{i}(M) \dim H^{j}(N) \\ &= \sum_{k} \sum_{i+j=k} (-1)^{i+j} \dim H^{i}(M) \dim H^{j}(N) \\ &= \left(\sum_{i} (-1)^{i} \dim H^{i}(M)\right) \left(\sum_{j} (-1)^{j} \dim H^{j}(N)\right) \\ &= \chi(M) \chi(N). \end{split}$$

- 7. Let v_1, \ldots, v_n be a basis for T_eG , v^1, \ldots, v^n the dual basis, let $\phi_g : G \to G$ be left multiplication by g, and let $\omega \in \Omega^n(G)$ be given by $\omega_g := \phi_{g^{-1}}^* v^1 \wedge \cdots \wedge v^n$. This is a smooth form, as on the corresponding left-invariant vector fields X_i we have $\omega(X_1, \ldots, X_n) = 1$, the constant function, hence $\omega(V_1, \ldots, V_n)$ is smooth for arbitrary $V_i \in VF(G)$, which must be C^{∞} linear combinations of X_1, \ldots, X_n . But it is also nowhere vanishing, so G is orientable.
- 8. Since dim $\mathfrak{g} = \dim G > 0$, there exists a nonzero left-invariant vector field, which is nowhere vanishing, and also G is orientable by the previous problem, so $\chi(G) = 0$ by the Poincaré-Hopf Index Theorem.