Mathematics G4402x Modern Geometry

Final Examination

December 16, 2013

Attempt all eight problems. On each page of your blue book, write the number of the problem you work on inside a *circle*. You may use any results from lectures or homework, but be sure to refer to them clearly and state the source. In grading the exam, I will emphasize accuracy, brevity, and clarity. Good luck!

- **1.** Let *M* be a nonempty compact manifold of dimension n > 0. Show that there is no submersion $F: M \to \mathbf{R}^n$.
- **2.** Let *M* be a manifold, $N \subset M$ a regular submanifold. For $p \in N$, show that $Y \in T_pM$ belongs to T_pN if and only if Yf = 0 for every $f \in C^{\infty}(M)$ vanishing on *N*.
- **3.** If $X, Y, Z \in VF(M)$, show that $L_X L_Y Z L_Y L_X Z = L_{[X,Y]} Z$.
- **4.** For $\nu \in \Omega^k(M)$ and n > 1, let $\nu^n = \nu \wedge \cdots \wedge \nu$ (*n* times). For $X \in VF(M)$ and n > 1, show that $L_X(\nu^n) = n\nu^{n-1} \wedge L_X\nu$ if k is even, but $L_X(\nu^n) = 0$ if k is odd.
- **5.** Let $X, Y \in VF(\mathbf{R}^3)$ satisfy $X(\mathbf{u}) \cdot \mathbf{u} = 0 = Y(\mathbf{u}) \cdot \mathbf{u}$ for all $\mathbf{u} \in \mathbf{R}^3$. Prove that Z = [X, Y] also satisfies $Z(\mathbf{u}) \cdot \mathbf{u} = 0$ for all $\mathbf{u} \in \mathbf{R}^3$.
- **6.** If M, N are compact manifolds, prove that $\chi(M \times N) = \chi(M)\chi(N)$.
- 7. Prove that any Lie group G is orientable.
- 8. If G is a compact Lie group of dimension > 0, prove that $\chi(G) = 0$.