Mathematics GR6262
 Algebraic Geometry

Assignment \#7

Due Mar. 22, 2023

1. Must a module of finite length over a local ring R be a vector space over R / \mathfrak{m} ? Give a proof or counterexample.
2. State and prove a characterization of $V(\operatorname{Ann} M)$ for M a module over $k\left[x_{1}, \ldots, x_{n}\right]$ of finite length, where k is algebraically closed as usual.
3. If $\phi_{d}: \mathbf{P}^{n} \rightarrow \mathbf{P}^{N}$ is the degree d Veronese embedding, then the degree of $\phi_{d}\left(\mathbf{P}^{n}\right)$ is d^{n}.
4. (a) The degree of the Segre embedding of $\mathbf{P}^{r} \times \mathbf{P}^{s}$ in \mathbf{P}^{n} is $\binom{r+s}{r}$.
(b) Generalize to $\mathbf{P}^{r_{1}} \times \cdots \times \mathbf{P}^{r_{m}}$.
5. For an r-dimensional variety $X \subset \mathbf{P}^{n}$ with Hilbert polynomial P_{X}, define the arithmetic genus to be $p_{a}(X):=(-1)^{r}\left(P_{X}(0)-1\right)$. Hartshorne: "This is an important invariant which, as we will see later, is independent of the projective embedding of Y."
(a) First of all, $p_{a}\left(\mathbf{P}^{n}\right)=0$.
(b) If Y is a plane curve of degree d, then $p_{a}(Y)=(d-1)(d-2) / 2$.
(c) More generally, if H is a hypersurface in \mathbf{P}^{n} of degree d, then $p_{a}(H)=\binom{d-1}{n}$.
(d) If $Y \subset \mathbf{P}^{r}, Z \subset \mathbf{P}^{s}$ are of dimensions d, e respectively, and $Y \times Z \subset \mathbf{P}^{n}$ is embedded via the Segre embedding $\mathbf{P}^{r} \times \mathbf{P}^{s} \rightarrow \mathbf{P}^{n}$, then

$$
p_{a}(Y \times Z)=p_{a}(Y) p_{a}(Z)+(-1)^{e} p_{a}(Y)+(-1)^{d} p_{a}(Z) .
$$

6. If a triangle is inscribed in a smooth conic, then the intersections of its sides with the tangents to the conic at the opposite vertices are collinear.
