Mathematics GR6262 Algebraic Geometry

Assignment #6 Due Mar. 8, 2023

- 1. Every constructible set contains a dense open subset of its closure.
- **2.** In a graded ring, a homogeneous ideal \mathfrak{p} is prime if and only if it satisfies the condition that $ab \in \mathfrak{p}$ implies $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$ for homogeneous a, b only.
- **3.** Every irreducible curve (over an algebraically closed field) is birational to a plane curve.
- 4. (a) If P^N = Pk[x₀,...,x_m]_d is the projective space parametrizing homogeneous polynomials of degree d in x₀,...,x_m, then there exists a dense open U ⊂ P^N such that V(f) ⊂ P^m is smooth for every [f] ∈ U.
 (b) If instead P^N parametrizes bihomogeneous polynomials in x₀,..., x_m and y₀,..., y_n

of bidegree (d, e), then there again exists a dense open $U \subset \mathbf{P}^N$ such that $\mathbf{V}(f) \subset \mathbf{P}^m \times \mathbf{P}^n$ is smooth for every $[f] \in U$.

- 5. Over a PID, a finitely generated module has finite length if and only if it contains no free submodule. (You may use the classification of finitely generated modules over a PID, which is exactly parallel to the classification of finitely generated abelian groups.)
- 6. (a) Over $\mathbf{C}[t]$, let $M = \mathbf{C}^2$, where t acts by multiplication by a fixed 2×2 matrix A. What is the length $\ell(M)$ in terms of the entries of A?
 - (b) Same thing with **C** replaced by **R**.
- 7. Over an algebraically closed field, every linear subspace of dimension > (m-1)(n-1) of the space of $m \times n$ matrices contains a matrix of rank 1.