Mathematics GR6262 Algebraic Geometry

Assignment #5 Due Mar. 1, 2023

As usual, varieties are over an algebraically closed field k.

- 1. Recall that a curve is *rational* if it is birational to \mathbf{P}^1 . Let Y be a smooth rational curve not isomorphic to \mathbf{P}^1 .
 - (a) Show that Y is isomorphic to an open subset of \mathbf{A}^1 .
 - (b) Show that Y is affine.
 - (c) Show that K[Y] is a unique factorization domain.
- **2.** Let Y be the curve $y^2 = x^3 x$ in \mathbf{A}^2 , and assume that char $k \neq 2$.
 - (a) Show that Y is smooth, and hence that k[Y] is integrally closed.

(b) Let k[x] be the subring of k(Y) generated over k by x. Show that it is a polynomial ring and that k[Y] is its integral closure in k(Y).

(c) Show there is an automorphism $\sigma : k[Y] \to k[Y]$ given by $x \mapsto x$ and $y \mapsto -y$. For any $a \in k[Y]$, define the *norm* to be $N(a) = a \sigma(a)$. Show that $N(a) \in k[x]$, N(1) = 1, and N(ab) = N(a) N(b) for any $a, b \in k[Y]$.

(d) Use the norm to show that the units in k[Y] are precisely the nonzero elements of k; that $x, x \pm 1$, and y are irreducible in k[Y]; and that k[Y] is not a unique factorization domain. (If you don't use the norm, then you are probably doing it wrong.)

(e) Conclude that Y is not a rational curve and that k(Y) is not a purely transcendental extension of k.

3. (a) Let Y be a smooth complete curve. Show that every nonconstant rational function f on Y defines a finite dominant morphism $\phi: Y \to \mathbf{P}^1$.

(b) Give a counterexample if Y is not smooth.

- 4. A projective variety $Y \subset \mathbf{P}^n$ is projectively normal (with respect to the given embedding) if its homogeneous coordinate ring $k[x_0, \ldots, x_n]/I_{C(Y)}$ is integrally closed, that is, if the affine cone C(Y) is normal.
 - (a) If Y is projectively normal, then it is normal.

(b) Let Y be the twisted quartic in \mathbf{P}^3 given parametrically by $[t, u] \mapsto [t^4, t^3u, tu^3, u^4]$. Show that Y is isomorphic to \mathbf{P}^1 , indeed that the morphism is a closed embedding.

(c) Prove that Y from (b) is normal but not projectively normal. Hence projective normality depends on the embedding. See Hartshorne III, Ex. 5.6 for more examples.

CONTINUED OVERLEAF...

5. Let X be the blow-up of \mathbf{P}^n at the point $[e_n]$, that is, the closure in $\mathbf{P}^{n-1} \times \mathbf{P}^n$ of the rational map $\mathbf{P}^n \to \mathbf{P}^{n-1}$ given by $[x_0, \ldots, x_n] \mapsto [x_0, \ldots, x_{n-1}]$.

(a) Prove that the morphism $X \to \mathbf{P}^{n-1} \times \mathbf{P}^n \to \mathbf{P}^n$ given by inclusion followed by projection has an inverse that is a rational map but is not a morphism if n > 1.

(b) Show that the valuative criterion becomes false if the curve C is replaced by a smooth variety of higher dimension.

6. Using the valuative criterion (or otherwise), show that a proper affine morphism has finite fibers.