As usual, varieties are over an algebraically closed field \(k \).

1. Recall that a curve is rational if it is birational to \(\mathbb{P}^1 \). Let \(Y \) be a smooth rational curve not isomorphic to \(\mathbb{P}^1 \).
 (a) Show that \(Y \) is isomorphic to an open subset of \(\mathbb{A}^1 \).
 (b) Show that \(Y \) is affine.
 (c) Show that \(K[Y] \) is a unique factorization domain.

2. Let \(Y \) be the curve \(y^2 = x^3 - x \) in \(\mathbb{A}^2 \), and assume that \(\text{char } k \neq 2 \).
 (a) Show that \(Y \) is smooth, and hence that \(k[Y] \) is integrally closed.
 (b) Let \(k[x] \) be the subring of \(k(Y) \) generated over \(k \) by \(x \). Show that it is a polynomial ring and that \(k[Y] \) is its integral closure in \(k(Y) \).
 (c) Show there is an automorphism \(\sigma : k[Y] \to k[Y] \) given by \(x \mapsto x \) and \(y \mapsto -y \). For any \(a \in k[Y] \), define the norm to be \(N(a) = a \sigma(a) \). Show that \(N(a) \in k[x] \), \(N(1) = 1 \), and \(N(ab) = N(a)N(b) \) for any \(a, b \in k[Y] \).
 (d) Use the norm to show that the units in \(k[Y] \) are precisely the nonzero elements of \(k \); that \(x, x \pm 1, \) and \(y \) are irreducible in \(k[Y] \); and that \(k[Y] \) is not a unique factorization domain. (If you don’t use the norm, then you are probably doing it wrong.)
 (e) Conclude that \(Y \) is not a rational curve and that \(k(Y) \) is not a purely transcendental extension of \(k \).

3. (a) Let \(Y \) be a smooth complete curve. Show that every nonconstant rational function \(f \) on \(Y \) defines a finite dominant morphism \(\phi : Y \to \mathbb{P}^1 \).
 (b) Give a counterexample if \(Y \) is not smooth.

4. A projective variety \(Y \subset \mathbb{P}^n \) is projectively normal (with respect to the given embedding) if its homogeneous coordinate ring \(k[x_0, \ldots, x_n]/I_C(Y) \) is integrally closed, that is, if the affine cone \(C(Y) \) is normal.
 (a) If \(Y \) is projectively normal, then it is normal.
 (b) Let \(Y \) be the twisted quartic in \(\mathbb{P}^3 \) given parametrically by \([t, u] \mapsto [t^4, t^3u, tu^3, u^4] \). Show that \(Y \) is isomorphic to \(\mathbb{P}^1 \), indeed that the morphism is a closed embedding.
 (c) Prove that \(Y \) from (b) is normal but not projectively normal. Hence projective normality depends on the embedding. See Hartshorne III, Ex. 5.6 for more examples.

CONTINUED OVERLEAF...
5. Let X be the blow-up of \mathbb{P}^n at the point $[e_n]$, that is, the closure in $\mathbb{P}^{n-1} \times \mathbb{P}^n$ of the rational map $\mathbb{P}^n \to \mathbb{P}^{n-1}$ given by $[x_0, \ldots, x_n] \mapsto [x_0, \ldots, x_{n-1}]$.

(a) Prove that the morphism $X \to \mathbb{P}^{n-1} \times \mathbb{P}^n \to \mathbb{P}^n$ given by inclusion followed by projection has an inverse that is a rational map but is not a morphism if $n > 1$.

(b) Show that the valuative criterion becomes false if the curve C is replaced by a smooth variety of higher dimension.

6. Using the valuative criterion (or otherwise), show that a proper affine morphism has finite fibers.