Mathematics GR6262
 Algebraic Geometry

Assignment \#5

Due Mar. 1, 2023

As usual, varieties are over an algebraically closed field k.

1. Recall that a curve is rational if it is birational to \mathbf{P}^{1}. Let Y be a smooth rational curve not isomorphic to \mathbf{P}^{1}.
(a) Show that Y is isomorphic to an open subset of \mathbf{A}^{1}.
(b) Show that Y is affine.
(c) Show that $K[Y]$ is a unique factorization domain.
2. Let Y be the curve $y^{2}=x^{3}-x$ in \mathbf{A}^{2}, and assume that char $k \neq 2$.
(a) Show that Y is smooth, and hence that $k[Y]$ is integrally closed.
(b) Let $k[x]$ be the subring of $k(Y)$ generated over k by x. Show that it is a polynomial ring and that $k[Y]$ is its integral closure in $k(Y)$.
(c) Show there is an automorphism $\sigma: k[Y] \rightarrow k[Y]$ given by $x \mapsto x$ and $y \mapsto-y$. For any $a \in k[Y]$, define the norm to be $N(a)=a \sigma(a)$. Show that $N(a) \in k[x], N(1)=1$, and $N(a b)=N(a) N(b)$ for any $a, b \in k[Y]$.
(d) Use the norm to show that the units in $k[Y]$ are precisely the nonzero elements of k; that $x, x \pm 1$, and y are irreducible in $k[Y]$; and that $k[Y]$ is not a unique factorization domain. (If you don't use the norm, then you are probably doing it wrong.)
(e) Conclude that Y is not a rational curve and that $k(Y)$ is not a purely transcendental extension of k.
3. (a) Let Y be a smooth complete curve. Show that every nonconstant rational function f on Y defines a finite dominant morphism $\phi: Y \rightarrow \mathbf{P}^{1}$.
(b) Give a counterexample if Y is not smooth.
4. A projective variety $Y \subset \mathbf{P}^{n}$ is projectively normal (with respect to the given embedding) if its homogeneous coordinate ring $k\left[x_{0}, \ldots, x_{n}\right] / I_{C(Y)}$ is integrally closed, that is, if the affine cone $C(Y)$ is normal.
(a) If Y is projectively normal, then it is normal.
(b) Let Y be the twisted quartic in \mathbf{P}^{3} given parametrically by $[t, u] \mapsto\left[t^{4}, t^{3} u, t u^{3}, u^{4}\right]$. Show that Y is isomorphic to \mathbf{P}^{1}, indeed that the morphism is a closed embedding.
(c) Prove that Y from (b) is normal but not projectively normal. Hence projective normality depends on the embedding. See Hartshorne III, Ex. 5.6 for more examples.
5. Let X be the blow-up of \mathbf{P}^{n} at the point $\left[e_{n}\right]$, that is, the closure in $\mathbf{P}^{n-1} \times \mathbf{P}^{n}$ of the rational map $\mathbf{P}^{n} \rightarrow \mathbf{P}^{n-1}$ given by $\left[x_{0}, \ldots, x_{n}\right] \mapsto\left[x_{0}, \ldots, x_{n-1}\right]$.
(a) Prove that the morphism $X \rightarrow \mathbf{P}^{n-1} \times \mathbf{P}^{n} \rightarrow \mathbf{P}^{n}$ given by inclusion followed by projection has an inverse that is a rational map but is not a morphism if $n>1$.
(b) Show that the valuative criterion becomes false if the curve C is replaced by a smooth variety of higher dimension.
6. Using the valuative criterion (or otherwise), show that a proper affine morphism has finite fibers.
