Mathematics GR6262
 Algebraic Geometry

Assignment \#4
Due Feb. 22, 2023

1. (a) If $X \subset Y$ are affine algebraic sets, then every closed embedding $X \rightarrow \mathbf{A}^{m}$ extends to a closed embedding $Y \rightarrow \mathbf{A}^{m+n}$ so that $X=Y \cap\left(\mathbf{A}^{m} \times 0\right)$.
(b) If $\phi: Y \rightarrow X$ is a dominant morphism of affine algebraic sets, then for every closed embedding $X \rightarrow \mathbf{A}^{m}$ there exists a closed embedding $Y \rightarrow \mathbf{A}^{m+n}$ such that the diagram commutes, where $\pi: \mathbf{A}^{m+n} \rightarrow \mathbf{A}^{m}$ is projection on the first factor:

2. The fibered product. If X, Y, Z are sets and $\phi: X \rightarrow Z, \psi: Y \rightarrow Z$ are maps, then the fibered product $X \times_{Z} Y$ is $\{(x, y) \in X \times Y \mid \phi(x)=\psi(y)\}$.
(a) If X, Y, Z are affine algebraic sets and ϕ, ψ are dominant morphisms, then $X \times{ }_{Z} Y$ may be given the structure of an affine algebraic set with $k\left[X \times_{Z} Y\right] \cong k[X] \otimes_{k[Z]} k[Y]$.
(b) Show that it satisfies the universal property that, if W is affine and the solid morphisms in the commutative diagram exist, then so does the dotted morphism.

(c) What goes wrong if $X=\mathbf{A}^{1}=Y$ and $Z=\mathbf{A}^{2}$, and instead of being dominant, $\phi(t)=(t, 0)$ and $\psi(t)=\left(t, t^{2}\right)$?
3. The join or pushout. If X, Y, Z are sets and $\phi: Z \rightarrow X, \psi: Z \rightarrow Y$ are maps, then the join or pushout $X \vee_{Z} Y$ is $(X \sqcup Y) / \sim$, where \sim is generated by $\phi(z) \sim \psi(z)$.
(a) If X, Y, Z are affine algebraic sets and ϕ, ψ are closed embeddings, then $X \vee_{Z} Y$ may be given the structure of an affine algebraic set. What is $k\left[X \vee_{Z} Y\right]$?
(b) Show that it satisfies a universal property like that for the fibered product, but with all arrows reversed.
(c) What goes wrong if $X=\mathbf{A}^{2}, Y=\mathbf{A}^{0}, Z=\mathbf{A}^{1}$, and $\phi(z)=(z, 0)$?
4. Using the definitions and theorems stated in the course so far, show that a finite morphism of algebraic sets is proper.
5. Let X be an algebraic set, $c \in X$. Show that for every $\rho \in T_{c} X, D_{\rho}(f)=\rho(f(x)-f(c))$ defines a derivation $D_{\rho}: \mathcal{O}_{X, c} \rightarrow k$, that is, a k-linear map satisfying the Leibniz rule $D_{\rho}(f g)=D_{\rho}(f) g(c)+f(c) D_{\rho}(g)$. Also show that every such derivation equals D_{ρ} for some $\rho \in T_{c} X$.
6. On an algebraic set V, show that $h(x)=\operatorname{dim} T_{x} V$ is upper semicontinuous.
7. Show that the affine cone on a smooth conic, $\mathbf{V}\left(u w-v^{2}\right) \subset \mathbf{A}^{3}$, is a normal variety. Hint: let ± 1 act on $k[x, y]$ and its fraction field by $x \mapsto-x, y \mapsto-y$. What are the invariant parts?
