Mathematics GR6262
 Algebraic Geometry

Assignment \#3
Due Feb. 15, 2023

1. Let V be a finite-dimensional vector space, and let Seg: $\mathbf{P} V \times \mathbf{P} V \rightarrow \mathbf{P}(V \otimes V)$ be the Segre embedding. The eigenspaces of the natural involution on $V \otimes V$ decompose it as $V \otimes V=\operatorname{Sym}^{2} V \oplus \Lambda^{2} V$. Describe, with proof, the intersection of $\operatorname{Seg}(\mathbf{P} V \times \mathbf{P} V)$ with $\mathbf{P} \operatorname{Sym}^{2} V$ and with $\mathbf{P} \Lambda^{2} V$.
2. The image of the Plücker embedding $\mathrm{Pl}: \mathrm{Gr}_{2} \mathbf{A}^{4} \rightarrow \mathbf{P}^{5}$ is a smooth quadric hypersurface.
(a) Write down the equation of this hypersurface explicitly.
(b) Describe the image of the locus X_{v} where the subspace $V \subset \mathrm{Gr}_{2} \mathrm{~A}^{4}$ contains a fixed nonzero $v \in \mathbf{A}^{4}$, and also the image of the locus X^{f} where the subspace V is annihilated by a fixed nonzero linear functional $f: \mathbf{A}^{4} \rightarrow k$.

In the remaining problems, V and W denote varieties over k.
3. If $f: V \rightarrow W$ is any morphism, then $\operatorname{id}_{V} \times f: V \rightarrow V \times W$ is a closed embedding. (Call its image the graph of f and denote it by $\Gamma(f)$.)
4. (a) If $f: V \rightarrow W$ is any morphism with V complete, then $f(V)$ is closed in W and complete.
(b) Give a counterexample when W is a nonseparated prevariety.
5. If an open subset U of a variety V is complete, then $U=V$ or $U=\varnothing$.
6. If $f \in k[V]$ is a regular function, then its graph is closed even as a subset of $V \times \mathbf{P}^{1} \supset$ $V \times \mathbf{A}^{1}$.
7. If V is complete, then $k[V]=k$.
8. If an affine variety is complete, then it is a point.

