Mathematics GR6262 Algebraic Geometry

Assignment #3 Due Feb. 15, 2023

- 1. Let V be a finite-dimensional vector space, and let Seg : $\mathbf{P}V \times \mathbf{P}V \to \mathbf{P}(V \otimes V)$ be the Segre embedding. The eigenspaces of the natural involution on $V \otimes V$ decompose it as $V \otimes V = \operatorname{Sym}^2 V \oplus \Lambda^2 V$. Describe, with proof, the intersection of $\operatorname{Seg}(\mathbf{P}V \times \mathbf{P}V)$ with $\mathbf{P} \operatorname{Sym}^2 V$ and with $\mathbf{P}\Lambda^2 V$.
- 2. The image of the Plücker embedding $Pl: Gr_2 A^4 \to P^5$ is a smooth quadric hypersurface.
 - (a) Write down the equation of this hypersurface explicitly.

(b) Describe the image of the locus X_v where the subspace $V \subset \operatorname{Gr}_2 \mathbf{A}^4$ contains a fixed nonzero $v \in \mathbf{A}^4$, and also the image of the locus X^f where the subspace V is annihilated by a fixed nonzero linear functional $f : \mathbf{A}^4 \to k$.

In the remaining problems, V and W denote varieties over k.

- **3.** If $f: V \to W$ is any morphism, then $id_V \times f: V \to V \times W$ is a closed embedding. (Call its image the *graph* of f and denote it by $\Gamma(f)$.)
- **4.** (a) If $f: V \to W$ is any morphism with V complete, then f(V) is closed in W and complete.

(b) Give a counterexample when W is a nonseparated prevariety.

- 5. If an open subset U of a variety V is complete, then U = V or $U = \emptyset$.
- 6. If $f \in k[V]$ is a regular function, then its graph is closed even as a subset of $V \times \mathbf{P}^1 \supset V \times \mathbf{A}^1$.
- 7. If V is complete, then k[V] = k.
- 8. If an affine variety is complete, then it is a point.