Mathematics GR6262
 Algebraic Geometry

Assignment \#2

Due Feb. 8, 2023

1. As presented in class, the Hauptidealsatz states that if X is an affine variety of dimension d over an algebraically closed field k and $0 \neq f \in k[X]$, then every irreducible component of $\mathbf{V}(f)=\{x \in X \mid f(x)=0\}$ has dimension $d-1$. Use this to prove that if $f_{1}, \ldots, f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$, then every irreducible component of $\mathbf{V}\left(f_{1}, \ldots, f_{m}\right) \subset \mathbf{A}^{n}$ has dimension $\geq n-m$.
2. Let $X=\mathbf{V}(w z-x y) \subset \mathbf{A}^{4}$.
(a) Show that X is irreducible of dimension 3.
(b) Show that $k[X]$ is not a UFD.
(c) Show that, inside X, all irreducible components of the closed subset $\mathbf{V}(w) \subset X$ have dimension 2 but are not of the form $\mathbf{V}(g)$ for any $g \in k[X]$.
3. Let $\left[x_{1}, \ldots, x_{m}\right]$ and $\left[y_{1}, \ldots, y_{n}\right]$ be homogeneous coordinates on \mathbf{P}^{m-1} and \mathbf{P}^{n-1}, respectively. A polynomial $f \in k\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right]$ is said to be bihomogeneous of bidegree (d, e) if every term is a monomial of degree d in the x_{i} times a monomial of degree e in the y_{j}. For example, $3 x_{1}^{2} x_{2} y_{3}^{7}-4 x_{3}^{3} y_{1}^{2} y_{2}^{5}$ is bihomogeneous of bidegree $(3,7)$.
(a) Show that a bihomogeneous polynomial $f \neq 0$ vanishes on a well-defined hypersurface $\mathbf{V}(f) \subset \mathbf{P}^{m-1} \times \mathbf{P}^{n-1}$. Classify all hypersurfaces of bidegree $(1,1)$ modulo the action of $G L(m) \times G L(n)$. Hint: it may be easier to work in a coordinate-free fashion on $\mathbf{P} U \times \mathbf{P} W$, where U, W are finite-dimensional vector spaces.
(b) Which of the hypersurfaces you found in (a) are singular, and which are smooth? Hint: dehomogenize, then use the rule that $\operatorname{Sing} \mathbf{V}(f)=\mathbf{V}(f) \cap \mathbf{V}(\nabla f)$.
4. (a) Show that $k\left[\mathbf{A}^{n} \backslash 0\right] \cong k\left[\mathbf{A}^{n}\right]$ if $n>1$.
(b) Show that $\mathbf{A}^{n} \backslash 0$ is not isomorphic to an affine variety if $n>1$.
5. (a) Show that $k\left[\mathbf{P}^{n-1}\right] \cong k$.

Hint: Use the previous problem or the standard affine cover.
(b) Show that \mathbf{P}^{n-1} is not isomorphic to an affine variety if $n>1$.
6. If U and V are quasi-projective varieties, show that $\operatorname{dim}(U \times V)=\operatorname{dim} U+\operatorname{dim} V$. Hint: reduce to the affine case, then use Noether normalization.
7. If there is a dominant morphism of quasi-projective varieties $\phi: U \rightarrow V$, show that $\operatorname{dim} U \geq \operatorname{dim} V$. (No algebraic space-filling curves.)

