1. Let \(f : \mathbb{P}^M \to \mathbb{P}^N \) be a morphism. If \(f^* \mathcal{O}(1) \cong \mathcal{O}(d) \), show that \(d \geq 0 \), that \(d = 0 \) iff \(f \) is constant, and that \(d = 1 \) iff \(f \) is the inclusion of a linear subspace.

2. If \(S : \mathbb{P}^m \times \mathbb{P}^n \to \mathbb{P}^N \) is the Segre embedding, show that \(S^* \mathcal{O}(1) \cong \pi_1^* \mathcal{O}(1) \otimes \pi_2^* \mathcal{O}(1) \).

3. Show that the divisor \(D \) defined by \(a = b = 0 \) in the variety \(X \subset \mathbb{A}^4 \) defined by \(ad - bc = 0 \) (the cone on a smooth quadric surface) is not locally principal. That is, Weil does not imply Cartier on \(X \). Hint: if \(D \cap U = X \cap V(f) \cap U \) for some \(f \in k[a,b,c,d] \) and some nonempty open \(U \subset \mathbb{A}^4 \), show that we may assume \(f \) homogeneous. Then seek a contradiction with the previous problem.

4. A linear system \(V \), that is, a finite-dimensional subspace of \(H^0(X,L) \) for some line bundle, is said to be basepoint-free if for all \(x \in X \) there exists \(\sigma \in V \) such that \(\sigma(x) \neq 0 \). In this case, it defines a morphism \(X \to \mathbb{P}^V \) given by \(x \mapsto \text{ev}_x \), or in terms of a basis \(\sigma_i \) by \(x \mapsto [\sigma_i(x)] \). A linear system is complete and is denoted \(|L| \) if \(V = H^0(X,L) \), incomplete otherwise. Show that the complete linear system \(|\mathcal{O}(d)| \) on \(\mathbb{P}^n \) is the degree \(d \) Veronese embedding.

5. If a linear system \(V \) on a projective variety \(X \) defines a closed embedding \(f : X \to \mathbb{P}^N \) but is incomplete, prove that the cone \(C(f(X)) \) is not normal. Hint: recall A14#4.

6. Prove that \(\text{Pic}(\mathbb{P}^m \times \mathbb{P}^n) \cong \mathbb{Z} \times \mathbb{Z} \), generated by \(\pi_1^* \mathcal{O}(1) \) and \(\pi_2^* \mathcal{O}(1) \).

7. (a) Suppose that \(X, Y \) are smooth varieties and that there is a rational map \(f : X \dashrightarrow Y \) with rational inverse \(g : Y \dashrightarrow X \), both regular except on subsets of codimension > 1. Prove that \(\text{Pic} X \cong \text{Pic} Y \).

(b) Give a counterexample when \(f \) is regular except on a subset of codimension 1.