1. Generalize the proof given in class for complete varieties to prove one direction of the *valuative criterion of properness*: If a morphism \(f : X \to Y \) of varieties is proper, then for every smooth curve \(C \), nonempty open \(U \subset C \), and morphism \(U \to X \) such that the composition \(U \to X \to Y \) extends to a morphism \(C \to Y \), then \(U \to X \) extends to \(C \to X \). That is, the dotted arrow exists in the diagram below.

\[
\begin{array}{ccc}
U & \longrightarrow & X \\
\downarrow & & \downarrow \\
C & \longrightarrow & Y
\end{array}
\]

2. Give a counterexample to the above when \(C \) is not smooth.

3. Prove that a subset of a variety is a finite union of locally closed subsets if and only if it is a finite disjoint union of locally closed subsets. (We call both *constructible.*)

4. Let \(X \) be a variety and let \(S \) be the smallest set of subsets of \(X \) that (i) contains all open sets, (ii) is closed under complements, (iii) is closed under finite unions. Prove that \(S \) is the set of constructible sets.

5. Prove that every curve is birational to a plane curve. (Informally, we know from last semester that the latter cannot be smooth if its genus is not of the form \((d-1)(d-2)/2\).)

 Hint: Maybe there is an easier way, but I was helped by KConrad’s answer at http://mathoverflow.net/questions/21/finite-extension-of-fields-with-no-primitive-element

6. Let \(f : X \to Y \) be a morphism of varieties, \(f^*_x : \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x} \) the induced homomorphism of local rings.

 (a) Show that \(f \) is an isomorphism if and only if it is a homeomorphism and, for all \(x \in X \), \(f^*_x \) is an isomorphism.

 (b) Show that \(f(X) \) is dense in \(Y \) if and only if, for all \(x \in X \), \(f^*_x \) is injective.

7. If \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) is a morphism with \(f^{-1}(0) = \{3, 5\} \) and \(f^{-1}(\infty) = \{2, 4\} \), then what are the possible values of \(f(0) \)? Why? (Assume 2,3,4,5 are all distinct!!!)

8. Let \(C \subset \mathbb{A}^2 \) be the cusp \(x^2 = y^3 \), let \(\pi : X \to \mathbb{A}^2 \) be the blow-up at 0, and let \(\tilde{C} = \pi^{-1}(C \setminus 0) \). Show that \(\tilde{C} \to C \) is the normalization. What about with \(x^2 = y^5 \)?