Mathematics G4263y
Algebraic Geometry
Assignment #14
Due Thursday, January 29, 2015

Most of these exercises are taken from Chapter I of Hartshorne, or from Shafarevich. All
varieties are irreducible over an algebraically closed field \(K \).

1. Recall that a curve is *rational* if it is birational to \(\mathbb{P}^1 \). Let \(Y \) be a smooth rational
curve not isomorphic to \(\mathbb{P}^1 \).
 (a) Show that \(Y \) is isomorphic to an open subset of \(\mathbb{A}^1 \).
 (b) Show that \(Y \) is affine.
 (c) Show that \(K[Y] \) is a unique factorization domain.

2. Let \(Y \) be the curve \(y^2 = x^3 - x \) in \(\mathbb{A}^2 \), and assume that \(\text{char } K \neq 2 \).
 (a) Show that \(Y \) is smooth, and hence that \(K[Y] \) is integrally closed.
 (b) Let \(K[x] \) be the subring of \(K(Y) \) generated over \(K \) by \(x \). Show that it is a
 polynomial ring and that \(K[Y] \) is its integral closure in \(K(Y) \).
 (c) Show there is an automorphism \(\sigma : K[Y] \to K[Y] \) given by \(x \mapsto x \) and \(y \mapsto -y \).
 For any \(a \in K[Y] \), define the norm to be \(N(a) = a \sigma(a) \). Show that \(N(a) \in K[x] \),
 \(N(1) = 1 \), and \(N(ab) = N(a) N(b) \) for any \(a, b \in K[Y] \).
 (d) Use the norm to show that the units in \(K[Y] \) are precisely the nonzero elements of
 \(K \); that \(x \) and \(y \) are irreducible in \(K[Y] \); and that \(K[Y] \) is not a unique factorization
domain. (If you don’t use the norm, you are probably doing it wrong.)
 (e) Conclude that \(Y \) is not a rational curve and that \(K(Y) \) is not a purely transcendental extension of \(K \).

3. Let \(Y \) be a smooth complete curve. Show that every nonconstant rational function \(f \)
on \(Y \) defines a surjective morphism \(\phi : Y \to \mathbb{P}^1 \), and that for every \(P \in \mathbb{P}^1 \), \(\phi^{-1}(P) \) is
finite.

4. A projective variety \(Y \subset \mathbb{P}^n \) is *projectively normal* (with respect to the given embed-
dding) if its homogeneous coordinate ring \(S[Y] \) is integrally closed.
 (a) \(Y \) is projectively normal if and only if the cone \(C(Y) \) is normal.
 (b) If \(Y \) is projectively normal, then it is normal.
 (c) Let \(Y \) be the twisted quartic in \(\mathbb{P}^3 \) given parametrically by \([t, u] \mapsto [t^4, t^3u, tu^3, u^4] \).
 Then \(Y \) is normal but not projectively normal. See Hartshorne III, Ex. 5.6 for more
 examples.
 (d) Show that the curve from \(C \) is isomorphic to \(\mathbb{P}^1 \), indeed that the morphism is an
 isomorphism onto its image. Hence projective normality depends on the embedding.

CONTINUED OVERLEAF...
5. Let G be a finite group acting on a normal variety X by morphisms. Show that the quotient X/G is normal. (The quotient is defined to be the affine variety with $K[X/G] = K[X]^G$, where the right-hand side is by definition $\{f \in K[X] \mid \forall g \in G, gf = f\}$. It was shown in a student talk last semester that this is finitely generated over K; for a refresher, see Harris §10 or Serre, *Algebraic groups and class fields*, III.12.)

6. Show that the surface X defined by $xy = z^2$ in \mathbb{A}^3 is normal.

7. Let X be an affine variety and E a finite extension of $K(X)$. Prove that there exists an affine variety Y and a map $f : Y \to X$ with the properties (1) f is proper and surjective; (2) Y is normal; (3) $K(Y) = E$ with $f^* : k(X) \to K(Y) = E$ the inclusion. It is called the normalization of X in E.

8. Again let X be the surface $xy = z^2$ in \mathbb{A}^3, and let $E = K(X)(\sqrt{x})$. Show that the normalization of X is E is the affine plane, with normalization map of the form $x = u^2$, $y = v^2$, $z = uv$.

9. Sketch a proof of the assertions of Exercise 7 for X an arbitrary curve, not necessarily affine. Prove that Y is complete if X is.