Mathematics GR6262
 Algebraic Geometry

Assignment \#12

Due May 3, 2023

1. Let C be a smooth projective curve, fix $x_{0} \in C$, and let $i: C \rightarrow C \times C$ be $i(x)=(x, x)$, $j: C \rightarrow C \times C$ be $j(y)=\left(x_{0}, y\right)$, and $\pi_{2}: C \times C \rightarrow C$ be $\pi_{2}(x, y)=y$. Also regard $\Delta=i(C)$ and $D=j(C)$ as effective divisors on $C \times C$. Given a vector bundle E over C, use the push-pull and adjunction formulas to give careful, rigorous proofs that, as asserted in class,
(a) $j_{*} E=\left(\pi_{2}^{*} E\right) \otimes \mathcal{O}_{D}$;
(b) $i_{*}\left(E \otimes K_{C}^{*}\right)=\pi_{2}^{*} E(\Delta) \otimes \mathcal{O}_{\Delta}$.
2. Use Riemann-Roch for line bundles to prove Riemann-Roch for vector bundles: if E is a vector bundle of rank r and degree d over a smooth complete curve C of genus g, then

$$
\chi(C, E)=d+r(1-g) .
$$

3. State and prove a formula for the genus of a smooth curve of bidegree (a, b) in $\mathbf{P}^{1} \times \mathbf{P}^{1}$.
4. Use triangulations to give a topological proof, for curves over the complex numbers, of the Riemann-Hurwitz formula: if $\phi: \tilde{C} \rightarrow C$ is a morphism of degree $d>0$ between smooth complete curves of genera \tilde{g} and g, respectively, then

$$
2 \tilde{g}-2=d(2 g-2)+\sum_{y \in \tilde{C}}\left(o_{y} \phi-1\right) .
$$

5. Every smooth complete curve of genus 0 is isomorphic to \mathbf{P}^{1}.
6. If a smooth complete curve has a line bundle of degree 1 with 2 independent sections, then it is isomorphic to \mathbf{P}^{1}.
7. Every smooth complete curve of genus 2 is hyperelliptic.
