Throughout, let F be a field.

1. Let $f, g \in F[x]$, let E be a splitting field for f over F, and let D be a splitting field for g over E. Show that D is a splitting field for fg over F.

2. (a) Show that the splitting field E of $f \in F[x]$ is a finite extension of F; indeed, if $n = \deg f$, show that $[E : F] \leq n!$. Hint: reduce to the irreducible case and consider $F[x]/(f)$.

(b) Show that equality holds in (a) for $F = \mathbb{Q}$ and $f(x) = x^3 - 2$. (You may use the intermediate value theorem from calculus.)

3. Show that any irreducible $f \in \mathbb{F}_p[x]$ of degree n divides $x^q - x$, where $q = p^n$. Hint: consider $\mathbb{F}_p[x]/(f)$ and use the fact that \mathbb{F}_p is perfect.

4. Let F be a finite field with p^n elements for p prime. If a generates the cyclic group F^\times, show that the minimal polynomial of a over \mathbb{F}_p has degree n.

5. Is the finite field F_4 isomorphic as a ring to \mathbb{Z}_4? What about to $\mathbb{Z}_2 \times \mathbb{Z}_2$? Why or why not?

6. We proved in class that a field F with p^n elements contains a field with p^m elements if and only if $m \mid n$. Prove that, in this case, there is only one such subfield.

7. For any prime number p and any nonzero $a \in \mathbb{F}_p$, prove that $x^p - x + a$ is irreducible in $\mathbb{F}_p[x]$. Hint: show first that in any field extension, if r is a root, then so is $r + 1$.

8. (a) Prove that for a finite field F of characteristic p, the Frobenius map $\phi : F \to F$ given by $\phi(a) = a^p$ is a homomorphism such that $\phi|_{\mathbb{F}_p} = \text{id}$.

(b) For any nonzero $f \in \mathbb{F}_p[x]$, if a is a root in any field extension, prove that a^p is too.

9. (a) Prove that over a finite field F with q elements, $x^{q-1} - 1 = \prod_{a \in F^\times} (x - a)$.

(b) Prove that the product of all nonzero elements of a finite field is -1.

(c) Prove Wilson’s theorem: if p is a prime number, then $(p - 1)! \equiv -1 \pmod{p}$.