Mathematics W4041x Introduction to Modern Algebra

Answers to Practice Midterm #1 October 6, 2016

- **1.** A relation \sim on a set S is an equivalence relation if:
 - (a) it is *reflexive*: for all $x \in S$, $x \sim x$;
 - (b) it is symmetric: for all $x, y \in S$, $x \sim y$ implies $y \sim x$; and
 - (c) it is *transitive*: for all $x, y, z \in S$, $x \sim y$ and $y \sim z$ imply $x \sim z$.
- **2.** Since $A \setminus (B \cup C) = \{x \in A \mid x \notin B \cup C\}$, we have the chain of equivalences $x \in A \setminus (B \cup C) \Leftrightarrow x \in A$ and $x \notin B \cup C \Leftrightarrow x \in A$ but it is false that $(x \in B \text{ or } x \in C) \Leftrightarrow x \in A$ and $x \notin B$ and $x \notin C \Leftrightarrow x \in A \setminus B$ and $x \notin C \Leftrightarrow x \in (A \setminus B) \setminus C$. Hence by the definition of set equality, $A \setminus (B \cup C) = (A \setminus B) \setminus C$.
- **3.** P1, saying that [0] is not a successor, is violated: indeed, [0] = [4 + 1] = f([4]). P2, saying that f is injective, is satisfied: indeed, if f([i]) = f([j]), then [i+1] = [j+1], so $5 \mid (i+1) (j+1) = i j$ using commutativity and associativity in \mathbb{Z} , so [i] = [j]. P3, the axiom of induction, is satisfied, as the following proof shows. Assume $[0] \in S$ and $[n] \in S$ implies $[n+1] \in S$. Taking n = 0 in the latter, we find that $[1] = [0+1] \in S$; taking $n = 1, [2] \in S$; taking $n = 2, [3] \in S$, and taking $n = 3, [4] \in S$. Hence every element of \mathbb{Z}_5 is in S, so $S = \mathbb{Z}_5$.
- 4. For f to be well-defined means that for all $i, j \in \mathbb{Z}$, $i \equiv j \pmod{m}$ implies $[ki] = [kj] \in \mathbb{Z}_m$, that is, $ki \equiv kj \pmod{n}$. Equivalently, for all $i, j \in \mathbb{Z}$, $m \mid (i j)$ implies $n \mid (ki kj)$. If we suppose $n \mid km$, then $m \mid (i j)$ implies $n \mid km \mid k(i j) = ki kj$, so f is well-defined. Conversely, if we suppose f is well-defined, let i = m and j = 0. Then $m \mid (i j) = m$, so $n \mid (ki kj) = k(i j) = km$.
- 5. If m+n = m, then m+n = m+0 by the definition of addition, hence n+m = 0+m by commutativity, hence n = 0 by cancellation. Thus we have proved that if $m + n \neq m$ is false, then n = 0 is true. That is, $m + n \neq m$ or n = 0.
- **6.** If $m \mid n$ and $p \mid q$, then there exist $c, d \in Z$ such that n = cm and q = dp, but then nq = (cm)(dp) = (cd)(mp) by commutativity and associativity, so $mp \mid nq$.
- 7. By the Main Theorem on GCDs, (x, y) is the least positive element of $\{ax + by | a, b \in \mathbb{Z}\}$, while (x + y, y) is the least positive element of $\{c(x + y) + dy | c, d \in \mathbb{Z}\}$. But ax + by = a(x + y) + (b a)y, so every element of the first set belongs to the second; and c(x + y) + dy = cx + (c + d)y, so every element of the second set belongs to the first. Hence the two sets are equal.