Mathematics GU4041 Introduction to Modern Algebra
 Practice Midterm \#1

October 6, 2016
Attempt all 7 problems. Each is worth 10 points. Good luck!

1. State the definition of an equivalence relation.
2. Prove that for any sets A, B, C, we have $A \backslash(B \cup C)=(A \backslash B) \backslash C$.
3. Let \mathbb{Z}_{5} denote the set of integers modulo 5 . Let [0] be the zero element, and let $f([n]):=[n+1]$ be the successor function. Which of the Peano axioms does \mathbb{Z}_{5} then satisfy, and which does it violate? For each axiom, prove your answer correct.
4. For natural numbers k, m, n with $m \neq 0 \neq n$, show that the function $f: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ given by $f([i]):=[k i]$ is well-defined if and only if $n \mid k m$.
5. Prove that for all $m, n \in \mathbb{N}$, either $m+n \neq m$ or $n=0$.
6. Prove that if m, n, p, q are natural numbers with $m \mid n$ and $p \mid q$, then $m p \mid n q$.
7. Let (x, y) denote the greatest common divisor of $x, y \in \mathbb{Z}$. Prove that $(x, y)=(x+y, y)$.
