Mathematics GU4041
 Introduction to Modern Algebra

Answers to Practice Final

December 20, 2016

1. Any finitely generated abelian group is isomorphic to a direct product of cyclic groups.
2. Yes, since $\#\langle S\rangle \geq \# S=12$ but $\#\langle S\rangle \mid \# G=20$: the only divisor of 20 that is ≥ 12 is 20 itself, so $\#\langle S\rangle=20$ and $\langle S\rangle=G$.
3. By Sylow 3 , since $210=2 \cdot 3 \cdot 5 \cdot 7$, this number is $\equiv 1(\bmod 3)$ and divides $70=2 \cdot 5 \cdot 7$. The only possibilities are $1,7,10$, and 70 .
4. The identity $A \rightarrow A$ is a bijection, so \sim is reflexive. If $f: A \rightarrow B$ is a bijection, then so is $f^{-1}: B \rightarrow A$, so \sim is symmetric. And if $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then so is $g \circ f: A \rightarrow C$, so \sim is transitive.
5. No. We proved that the center $Z G \neq 1$, but $Z G \triangleleft G$ (A10\#1), so G certainly fails to be simple unless $Z G=G$. But then G is abelian, and we proved in class (Thm 3, just before Sylow) that it has a subgroup of order p, which like all subgroups of an abelian group is normal.
6. By Sylow Thm 3 there's 1 Sylow 7 -subgroup (hence it's normal) and 1 or 7 Sylow 3-subgroups. All Sylows are of prime order, hence cyclic. If there's 1 Sylow-3, it's normal, so the Main Theorem on Direct Products applies and $G \cong \mathbb{Z}_{7} \times \mathbb{Z}_{3}$. If there are 7, the Main Theorem on Semidirect Products still applies, so $G \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$ for some nontrivial action of \mathbb{Z}_{3} on \mathbb{Z}_{7} by automorphisms. The generator multiplies by some number whose cube is $1(\bmod 7)$, which must be 2 or 4 (since 1 would be the trivial action). But 2 and $4=2^{2}$ lead to isomorphic groups, since the automorphism $\phi(g)=g^{2}$ of \mathbb{Z}_{3} exchanges them. Hence there are 2 isomorphism classes, namely $\mathbb{Z}_{7} \times \mathbb{Z}_{3}$ and one nontrivial semidirect product $\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$.
7. $\# \Sigma_{4}=4!=24=2^{3} \cdot 3$. A Sylow 2-subgroup is a subgroup of order 8. Note that (1234) acts on $\{1,2,3,4\}$ just as a 90° rotation acts on the vertices $\left\{e_{1}, e_{2},-e_{1},-e_{2}\right\}$ of a square, while (24) acts just as reflection in the x-axis does. The Sylow 2-subgroup generated by these elements is therefore isomorphic to D_{8}. Meanwhile, the Sylow 3 -subgroup $\{e,(123),(321)\}$, as a group of prime order, is isomorphic to \mathbb{Z}_{3}.
8. By the Main Theorem on Semidirect Products, there would otherwise be two proper, nontrivial subgroups whose intersection is 1 . But every nonidentity element of Q_{8} has some power equal to -1 , so the intersection of any two proper, nontrivial subgroups contains -1 .
9. A composition series for $G \times H$ is $1 \times 1 \triangleleft G \times 1 \triangleleft G \times H$, with composition factors G and H. We know from A9\#7 that there exists a composition series for $G \times H$ including K. If it's at the beginning or end of the series, it's $\cong 1$ or $G \times H$. If it's in the middle, by Jordan-Hölder, the length is 2 , so the series is $1 \triangleleft K \triangleleft G \times H$, and by Jordan-Hölder again, $K \cong G$ or H.
10. Since $\sigma \tau=\sigma(\tau \sigma) \sigma^{-1}$, these two elements are conjugate in Σ_{n}, and we know that conjugate elements factor into disjoint cycles of the same sizes.
11. (a) Let $g \cdot n=g n g^{-1}$. Note that $N \triangleleft G$ implies $g n g^{-1} \in N$, so this defines a map $G \times N \rightarrow N$. Then $g \cdot(h \cdot n)=g \cdot h n h^{-1}=g\left(h n h^{-1}\right) g^{-1}=(g h) n(g h)^{-1}=g h \cdot n$ and $e \cdot n=e n e^{-1}=n$, so it is an action. And $g \cdot m n=g m n g^{-1}=g m g^{-1} g n g^{-1}=$ $(g \cdot m)(g \cdot n)$, so the action is by automorphisms.
(b) This makes the action a homomorphism $G \rightarrow$ Aut $\mathbb{Z}_{5} \cong \mathbb{Z}_{4}$. But any homomorphism from a group of odd order to \mathbb{Z}_{4} is trivial, say by problem 4 on midterm 2. Hence for all $g \in G, n \in N, g n g^{1}=n$ and so $g n=n g$. Therefore $N \subset Z G$.
12. The prime factorization of $\# G$ must be $p_{1} p_{2} \cdots p_{k}$ where the primes p_{i} are all different. By the classification of finite groups, G is isomorphic to a product of cyclic groups of prime power order, so $G \cong \mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{k}}$. Now claim that, by induction on k, this is isomorphic to $\mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$. If $k=1$ this is trivial; if it's true for $k-1$, then $G \cong \mathbb{Z}_{p_{1} \cdots p_{k-1}} \times \mathbb{Z}_{p_{k}} \cong \mathbb{Z}_{p_{1} p_{2} \cdots p_{k}}$ by the Chinese Remainder Theorem.
13. Proof 1: We know $[H N: N] \mid[G: N]$ and $[H: H \cap N] \mid \# H$. Hence $[H N: N]$ and [$H: H \cap N]$ are relatively prime. But they are also equal, since they are the orders of $H N / N$ and $H /(H \cap N)$, which are isomorphic by the Second Isomorphism Theorem. Hence $[H: H \cap N]=1$, so $H \cap N=H$, so $N<H$.
Proof 2: Consider the projection $\pi: G \rightarrow G / N$. Then $\left.\pi\right|_{H}: H \rightarrow G / N$ is a homomorphism between groups of coprime order, hence trivial by problem 4 on midterm 2. Hence $H \subset \operatorname{ker} \pi=N$.
14. Let $G=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$, and let $S=\{$ functions $f: G \rightarrow\{A, B\}\}$. Then G acts on S by $(g \cdot f)(h)=f(g+h)$, and the problem is to count $\# S / G$. If $g \neq e$, then g has order exactly 3 , so $G /\langle g\rangle$ contains 3 cosets, and $f \in S^{g}$ if and only if f is constant on each coset. So $\# S^{g}=2^{3}$. On the other hand, clearly $S^{e}=S$, and $\# S=2^{9}$. By Burnside's lemma,

$$
\# S / G=\frac{1}{\# G} \sum_{g \in G} \# S^{g}=\frac{1}{9}\left(2^{9}+8 \cdot 2^{3}\right)=\frac{1}{9}\left(2^{9}+2^{6}\right)=2^{6}\left(2^{3}+1\right) / 9=64
$$

