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1. Any finitely generated abelian group is isomorphic to a direct product of cyclic
groups.

2. Yes, since #〈S〉 ≥ #S = 12 but #〈S〉 |#G = 20: the only divisor of 20 that is ≥ 12
is 20 itself, so #〈S〉 = 20 and 〈S〉 = G.

3. By Sylow 3, since 210 = 2·3·5·7, this number is ≡ 1 (mod 3) and divides 70 = 2·5·7.
The only possibilities are 1, 7, 10, and 70.

4. The identity A → A is a bijection, so ∼ is reflexive. If f : A → B is a bijection,
then so is f−1 : B → A, so ∼ is symmetric. And if f : A → B and g : B → C are
bijections, then so is g ◦ f : A→ C, so ∼ is transitive.

5. No. We proved that the center ZG 6= 1, but ZG C G (A10#1), so G certainly fails
to be simple unless ZG = G. But then G is abelian, and we proved in class (Thm 3,
just before Sylow) that it has a subgroup of order p, which like all subgroups of an
abelian group is normal.

6. By Sylow Thm 3 there’s 1 Sylow 7-subgroup (hence it’s normal) and 1 or 7 Sylow
3-subgroups. All Sylows are of prime order, hence cyclic. If there’s 1 Sylow-3, it’s
normal, so the Main Theorem on Direct Products applies and G ∼= Z7×Z3. If there
are 7, the Main Theorem on Semidirect Products still applies, so G ∼= Z7 o Z3 for
some nontrivial action of Z3 on Z7 by automorphisms. The generator multiplies by
some number whose cube is 1 (mod 7), which must be 2 or 4 (since 1 would be the
trivial action). But 2 and 4 = 22 lead to isomorphic groups, since the automorphism
φ(g) = g2 of Z3 exchanges them. Hence there are 2 isomorphism classes, namely
Z7 × Z3 and one nontrivial semidirect product Z7 o Z3.

7. #Σ4 = 4! = 24 = 23 · 3. A Sylow 2-subgroup is a subgroup of order 8. Note that
(1234) acts on {1, 2, 3, 4} just as a 90◦ rotation acts on the vertices {e1, e2,−e1,−e2}
of a square, while (24) acts just as reflection in the x-axis does. The Sylow 2-subgroup
generated by these elements is therefore isomorphic to D8. Meanwhile, the Sylow
3-subgroup {e, (123), (321)}, as a group of prime order, is isomorphic to Z3.

8. By the Main Theorem on Semidirect Products, there would otherwise be two proper,
nontrivial subgroups whose intersection is 1. But every nonidentity element of Q8 has
some power equal to −1, so the intersection of any two proper, nontrivial subgroups
contains −1.

9. A composition series for G×H is 1× 1 CG× 1 CG×H, with composition factors
G and H. We know from A9#7 that there exists a composition series for G × H
including K. If it’s at the beginning or end of the series, it’s ∼= 1 or G×H. If it’s in
the middle, by Jordan-Hölder, the length is 2, so the series is 1 CK C G ×H, and
by Jordan-Hölder again, K ∼= G or H.
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10. Since στ = σ(τσ)σ−1, these two elements are conjugate in Σn, and we know that
conjugate elements factor into disjoint cycles of the same sizes.

11. (a) Let g · n = gng−1. Note that N C G implies gng−1 ∈ N , so this defines a map
G × N → N . Then g · (h · n) = g · hnh−1 = g(hnh−1)g−1 = (gh)n(gh)−1 = gh · n
and e · n = ene−1 = n, so it is an action. And g ·mn = gmng−1 = gmg−1gng−1 =
(g ·m)(g · n), so the action is by automorphisms.

(b) This makes the action a homomorphism G→ Aut Z5
∼= Z4. But any homomor-

phism from a group of odd order to Z4 is trivial, say by problem 4 on midterm 2.
Hence for all g ∈ G, n ∈ N , gng1 = n and so gn = ng. Therefore N ⊂ ZG.

12. The prime factorization of #Gmust be p1p2 · · · pk where the primes pi are all different.
By the classification of finite groups, G is isomorphic to a product of cyclic groups
of prime power order, so G ∼= Zp1 × Zp2 × · · · × Zpk . Now claim that, by induction
on k, this is isomorphic to Zp1p2···pk . If k = 1 this is trivial; if it’s true for k− 1, then
G ∼= Zp1···pk−1

× Zpk
∼= Zp1p2···pk by the Chinese Remainder Theorem.

13. Proof 1: We know [HN : N ] | [G : N ] and [H : H ∩ N ] |#H. Hence [HN : N ] and
[H : H∩N ] are relatively prime. But they are also equal, since they are the orders of
HN/N and H/(H ∩N), which are isomorphic by the Second Isomorphism Theorem.
Hence [H : H ∩N ] = 1, so H ∩N = H, so N < H.

Proof 2: Consider the projection π : G → G/N . Then π|H : H → G/N is a
homomorphism between groups of coprime order, hence trivial by problem 4 on
midterm 2. Hence H ⊂ kerπ = N .

14. Let G = Z3 × Z3, and let S = {functions f : G → {A,B}}. Then G acts on S by
(g · f)(h) = f(g + h), and the problem is to count #S/G. If g 6= e, then g has order
exactly 3, so G/〈g〉 contains 3 cosets, and f ∈ Sg if and only if f is constant on
each coset. So #Sg = 23. On the other hand, clearly Se = S, and #S = 29. By
Burnside’s lemma,

#S/G =
1

#G

∑
g∈G

#Sg =
1

9
(29 + 8 · 23) =

1

9
(29 + 26) = 26(23 + 1)/9 = 64.
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