Mathematics GU4041 Introduction to Modern Algebra

Answers to Midterm Exam \#2

November 17, 2016

1. Let G be a group, $K \subset H$ both normal subgroups of G. Then H / K is normal in G / K and $(G / K) /(H / K) \cong G / H$.
2. Since G is simple and $\operatorname{ker} \phi$ is normal, either $\operatorname{ker} \phi=G$ or $\operatorname{ker} \phi=1$. In the first case $\phi(g)=e$. In the second case ϕ is injective. Because G and H have the same order, it is also surjective. (It is not actually necessary that H be simple.)
3. (a) $\{[0]\}=70 \mathbf{Z}_{70} \triangleleft 10 \mathbf{Z}_{70} \triangleleft 5 \mathbf{Z}_{70} \triangleleft \mathbf{Z}_{70}$;
(b) $1 \triangleleft A_{6} \triangleleft \Sigma_{6}$;
(c) $1 \triangleleft\left\{R^{3 i} \mid i \in \mathbb{Z}\right\} \triangleleft\left\{R^{i} \mid i \in \mathbb{Z}\right\} \triangleleft D_{12}$;
(d) $1 \triangleleft\{ \pm 1\} \triangleleft\{ \pm 1, \pm i\} \triangleleft Q_{8}$.
4. Multiplying both sides by g^{-1} on both the right and the left, we find $g^{-1} g h g^{-1}=$ $g^{-1} h g g^{-1}$ and hence $h g^{-1}=g^{-1} h$. Inverting both sides of $h g^{-1}=g^{-1} h$ and $g h=h g$, we also find $g h^{-1}=h^{-1} g$ and $h^{-1} g^{-1}=g^{-1} h^{-1}$. That is, the inverses of g and h commute with g and h as well as with each other.

For $i \in \mathbb{N}$, we prove $g^{i} h=h g^{i}$ by induction on i : the case $i=0$ is $e h=h e$, and if it is true for a given i, then $g^{i+1} h=g g^{i} h=g h g^{i}=h g g^{i}=h g^{i+1}$. For $i, j \in \mathbb{N}$, we similarly prove $g^{i} h^{j}=h^{j} g^{i}$ by induction on j : the case $j=0$ is $g^{i} e=e g^{i}$, and if it is true for a given j, then $g^{i} h^{j+1}=g^{i} h^{j} h=h^{j} g^{i} h=h^{j} h g^{i}=h^{j+1} g^{i}$, using $g^{i} h=h g^{i}$.
Since for every $i \in \mathbb{Z}$, either $i \in \mathbb{N}$ or $-i \in \mathbb{N}$, and similarly for j, the general case follows by putting together the results of the last two paragraphs.
5. If ϕ is a homomorphism as stated, then $g h=\phi(1,0) \phi(0,1)=\phi(1,1)=\phi(0,1) \phi(1,0)=$ $h g$. Conversely, if $g h=h g$, define ϕ by $\phi(i, j)=g^{i} h^{j}$. Then, using the previous problem, $\phi\left(i+i^{\prime}, j+j^{\prime}\right)=g^{i+i^{\prime}} h^{j+j^{\prime}}=g^{i} g^{i^{\prime}} h^{j} h^{j^{\prime}}=g^{i} h^{j} g^{i^{\prime}} h^{j^{\prime}}=\phi(i, j) \phi\left(i^{\prime}, j^{\prime}\right)$, so ϕ is a homomorphism.
6. Suppose first that $n \geq 2 p$. Let $g=(1 \cdots p)$ and $h=(p+1 \cdots 2 p)$ in Σ_{n}. Since g, h are disjoint cycles, $g h=h g$. By the previous problem, there is a homomorphism ϕ : $\mathbb{Z} \times \mathbb{Z} \rightarrow \Sigma_{n}$ given by $\phi(i, j)=g^{i} h^{j}$. By restricting to $\{1, \ldots, p\}$ and to $\{p+1, \ldots, 2 p\}$, we see that $\phi(i, j)=e$ if and only if $i, j \in p \mathbb{Z}$, that is, $\operatorname{ker} \phi=p \mathbb{Z} \times p \mathbb{Z}$. By the first isomorphism theorem, im $\phi \cong(\mathbb{Z} \times \mathbb{Z}) /(p \mathbb{Z} \times p \mathbb{Z}) \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.
On the other hand, if $n<2 p$, then clearly p^{2} does not divide n !, so Σ_{n} cannot have a subgroup of order p^{2} by Lagrange's theorem.
7. Let $\mathcal{O}_{1}, \ldots, \mathcal{O}_{n}$ be the orbits and let $s_{i} \in \mathcal{O}_{i}$. Using the counting formula, we have

$$
\# S=\sum_{i=1}^{n} \# \mathcal{O}_{i}=\sum_{i=1}^{n} \frac{\# G}{\# G_{s_{i}}}=\# G \sum_{i=1}^{n} \frac{1}{\# G_{s_{i}}} \leq \# G \sum_{i=1}^{n} 1=n \# G
$$

