Mathematics GU4041 Introduction to Modern Algebra

Answers to Midterm Exam #2 November 17, 2016

- **1.** Let G be a group, $K \subset H$ both normal subgroups of G. Then H/K is normal in G/K and $(G/K)/(H/K) \cong G/H$.
- **2.** Since G is simple and ker ϕ is normal, either ker $\phi = G$ or ker $\phi = 1$. In the first case $\phi(g) = e$. In the second case ϕ is injective. Because G and H have the same order, it is also surjective. (It is not actually necessary that H be simple.)
- **3.** (a) $\{[0]\} = 70\mathbf{Z}_{70} \triangleleft 10\mathbf{Z}_{70} \triangleleft 5\mathbf{Z}_{70} \triangleleft \mathbf{Z}_{70};$ (b) $1 \triangleleft A_6 \triangleleft \Sigma_6;$ (c) $1 \triangleleft \{R^{3i} \mid i \in \mathbb{Z}\} \triangleleft \{R^i \mid i \in \mathbb{Z}\} \triangleleft D_{12};$ (d) $1 \triangleleft \{\pm 1\} \triangleleft \{\pm 1, \pm i\} \triangleleft Q_8.$
- 4. Multiplying both sides by g^{-1} on both the right and the left, we find $g^{-1}ghg^{-1} = g^{-1}hgg^{-1}$ and hence $hg^{-1} = g^{-1}h$. Inverting both sides of $hg^{-1} = g^{-1}h$ and gh = hg, we also find $gh^{-1} = h^{-1}g$ and $h^{-1}g^{-1} = g^{-1}h^{-1}$. That is, the inverses of g and h commute with g and h as well as with each other.

For $i \in \mathbb{N}$, we prove $g^i h = hg^i$ by induction on i: the case i = 0 is eh = he, and if it is true for a given i, then $g^{i+1}h = gg^ih = ghg^i = hgg^i = hg^{i+1}$. For $i, j \in \mathbb{N}$, we similarly prove $g^i h^j = h^j g^i$ by induction on j: the case j = 0 is $g^i e = eg^i$, and if it is true for a given j, then $g^i h^{j+1} = g^i h^j h = h^j g^i h = h^j hg^i = h^{j+1}g^i$, using $g^i h = hg^i$.

Since for every $i \in \mathbb{Z}$, either $i \in \mathbb{N}$ or $-i \in \mathbb{N}$, and similarly for j, the general case follows by putting together the results of the last two paragraphs.

- 5. If ϕ is a homomorphism as stated, then $gh = \phi(1,0)\phi(0,1) = \phi(1,1) = \phi(0,1)\phi(1,0) = hg$. Conversely, if gh = hg, define ϕ by $\phi(i,j) = g^i h^j$. Then, using the previous problem, $\phi(i+i',j+j') = g^{i+i'}h^{j+j'} = g^i g^{i'}h^j h^{j'} = g^i h^j g^{i'}h^{j'} = \phi(i,j)\phi(i',j')$, so ϕ is a homomorphism.
- 6. Suppose first that $n \ge 2p$. Let $g = (1 \cdots p)$ and $h = (p + 1 \cdots 2p)$ in Σ_n . Since g, h are disjoint cycles, gh = hg. By the previous problem, there is a homomorphism ϕ : $\mathbb{Z} \times \mathbb{Z} \to \Sigma_n$ given by $\phi(i, j) = g^i h^j$. By restricting to $\{1, \ldots, p\}$ and to $\{p+1, \ldots, 2p\}$, we see that $\phi(i, j) = e$ if and only if $i, j \in p\mathbb{Z}$, that is, ker $\phi = p\mathbb{Z} \times p\mathbb{Z}$. By the first isomorphism theorem, im $\phi \cong (\mathbb{Z} \times \mathbb{Z})/(p\mathbb{Z} \times p\mathbb{Z}) \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

On the other hand, if n < 2p, then clearly p^2 does not divide n!, so Σ_n cannot have a subgroup of order p^2 by Lagrange's theorem.

7. Let $\mathcal{O}_1, \ldots, \mathcal{O}_n$ be the orbits and let $s_i \in \mathcal{O}_i$. Using the counting formula, we have

$$\#S = \sum_{i=1}^{n} \#\mathcal{O}_{i} = \sum_{i=1}^{n} \frac{\#G}{\#G_{s_{i}}} = \#G\sum_{i=1}^{n} \frac{1}{\#G_{s_{i}}} \le \#G\sum_{i=1}^{n} 1 = n \, \#G.$$