1. There exist a set \(\mathbb{N} \), an element \(0 \in \mathbb{N} \), and a successor function \(f : \mathbb{N} \to \mathbb{N} \), denoted \(f(n) = n' \), satisfying the following axioms.

P1: There does not exist \(n \in \mathbb{N} \) such that \(0 = n' \).

P2: For all \(m, n \in \mathbb{N} \), if \(m' = n' \), then \(m = n \).

P3: If \(S \subset \mathbb{N} \) is a subset, if \(0 \in S \), and if all \(n \in S \) satisfy \(n' \in S \), then \(S = \mathbb{N} \).

2. Note \(x \in X \setminus (A \cup B) \iff x \in X \) but \(x \not\in A \cup B \iff x \in X \) but it is false that \(x \in A \) or \(x \in B \iff x \in X \) and \(x \not\in A \) and \(x \not\in B \iff x \in X \) and \(x \not\in A \) and \(x \not\in X \) and \(x \not\in B \iff x \in X \setminus A \) and \(x \in X \setminus B \iff x \in (X \setminus A) \cap (X \setminus B) \). Hence the two sides are equal by the definition of set equality.

3. If \(g \circ f(x) = g \circ f(y) \), then \(g(f(x)) = g(f(y)) \) (by definition of \(\circ \)), hence \(f(x) = f(y) \) (since \(g \) is injective), hence \(x = y \) (since \(f \) is injective). Hence \(g \circ f \) is injective.

Given \(z \in U \), there exists \(y \in T \) such that \(z = g(y) \) (since \(g \) is surjective), and there exists \(x \in S \) such that \(y = f(x) \) (since \(f \) is surjective). Then \(x = g(f(x)) = g \circ f(x) \), so \(g \circ f \) is surjective.

Alternative proof: By the main theorem on inverses, there exist functions \(f^{-1} : T \to S \) and \(g^{-1} : U \to T \) such that \(f^{-1} \circ f = \text{id}_S \), \(f \circ f^{-1} = \text{id}_T \), \(g^{-1} \circ g = \text{id}_U \), and \(g \circ g^{-1} = \text{id}_U \).

Then \((g \circ f) \circ (f^{-1} \circ g^{-1}) = g \circ (f \circ f^{-1}) \circ g^{-1} = g \circ (\text{id}_T) \circ g^{-1} = g \circ g^{-1} = \text{id}_U \) and \((f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ (\text{id}_T) \circ f = f^{-1} \circ f = \text{id}_S \), so \(f^{-1} \circ g^{-1} \) is an inverse for \(g \circ f \). By the main theorem on inverses again, \(g \circ f \) is bijective.

4. If \(m \leq n \), then by definition of \(\leq \) there exists \(a \in \mathbb{N} \) such that \(n = m + a \). Then \(n^2 = n \cdot n = (m + a) \cdot (m + a) = (m + a) \cdot m + (m + a) \cdot a = (m^2 + am) + (ma + a^2) = m^2 + (am + ma + a^2) \). Since \(\mathbb{N} \) is closed under addition and multiplication by the definitions of these operations, \(am + ma + a^2 \in \mathbb{N} \), so \(m^2 \leq n^2 \) by the definition of \(\leq \).

5. Yes: it is reflexive since \(x - x = 0 = x \) if \(x \in \mathbb{Z} \), symmetric since \(x - y = -(x - y) = x \) if \(x \in \mathbb{Z} \) implies \(y - x = -(x - y) = z \) if \(z \in \mathbb{Z} \), and transitive since \(x - y = z \) and \(y - z = w \) imply \(x - w = x - y + y - z = y - z + x - y = (x - y) + (y - z) = z \) if \(z \in \mathbb{Z} \).

6. Since \(a \mid b \), there exists \(m \in \mathbb{Z} \) such that \(b = am \), and since \(b \mid c \), there exists \(n \in \mathbb{Z} \) such that \(c = bn \). Then \(a + b + c = a + am + bn = a + am + (am)n = a(1 + m + mn) \) where \(1 + m + mn \in \mathbb{Z} \) since \(\mathbb{Z} \) is closed under addition and multiplication. Hence \(a \mid a + b + c \).

7. By A4\#4, \((i, n) = 1 \) if and only if \([i] \in \mathbb{Z}_n \) has a reciprocal. Hence there exist \([c], [d] \in \mathbb{Z}_n \) such that \([ac] = [a][c] = [1] \) and \([bd] = [b][d] = [1] \) in \(\mathbb{Z}_n \). Hence \([ab][cd] = [abcd] = [ac][bd] = [1][1] = [1] \in \mathbb{Z}_n \), so \([ab] \) also has a reciprocal and hence \((ab, n) = 1 \).