Mathematics GU4041 Introduction to Modern Algebra

Answers to Midterm Exam \#1

October 6, 2016

1. There exist a set \mathbf{N}, an element $0 \in \mathbf{N}$, and a successor function $f: \mathbf{N} \rightarrow \mathbf{N}$, denoted $f(n)=n^{\prime}$, satisfying the following axioms.
P1: There does not exist $n \in \mathbf{N}$ such that $0=n^{\prime}$.
P2: For all $m, n \in \mathbf{N}$, if $m^{\prime}=n^{\prime}$, then $m=n$.
P3: If $S \subset \mathbf{N}$ is a subset, if $0 \in S$, and if all $n \in S$ satisfy $n^{\prime} \in S$, then $S=\mathbf{N}$.
2. Note $x \in X \backslash(A \cup B) \Longleftrightarrow x \in X$ but $x \notin A \cup B \Longleftrightarrow x \in X$ but it is false that $x \in A$ or $x \in B \Longleftrightarrow x \in X$ and $x \notin A$ and $x \notin B \Longleftrightarrow x \in X$ and $x \notin A$ and $x \in X$ and $x \notin B \Longleftrightarrow x \in X \backslash A$ and $x \in X \backslash B \Longleftrightarrow x \in(X \backslash A) \cap(X \backslash B)$. Hence the two sides are equal by the definition of set equality.
3. If $g \circ f(x)=g \circ f(y)$, then $g(f(x))=g(f(y))$ (by definition of \circ), hence $f(x)=f(y)$ (since g is injective), hence $x=y$ (since f is injective). Hence $g \circ f$ is injective.
Given $z \in U$, there exists $y \in T$ such that $z=g(y)$ (since g is surjective), and there exists $x \in S$ such that $y=f(x)$ (since f is surjective). Then $x=g(f(x))=g \circ f(x)$, so $g \circ f$ is surjective.
Alternative proof: By the main theorem on inverses, there exist functions $f^{-1}: T \rightarrow S$ and $g^{-1}: U \rightarrow T$ such that $f^{-1} \circ f=\mathrm{id}_{S}, f \circ f^{-1}=\mathrm{id}_{T}, g^{-1} \circ g=\mathrm{id}_{T}$, and $g \circ g^{-1}=\mathrm{id}_{U}$. Then $(g \circ f) \circ\left(f^{-1} \circ g^{-1}\right)=g \circ\left(f \circ f^{-1}\right) \circ g^{-1}=g \circ\left(\mathrm{id}_{T}\right) \circ g^{-1}=g \circ g^{-1}=\mathrm{id}_{U}$ and $\left(f^{-1} \circ g^{-1}\right) \circ(g \circ f)=f^{-1} \circ\left(g^{-1} \circ g\right) \circ f=f^{-1} \circ\left(\mathrm{id}_{T}\right) \circ f=f^{-1} \circ f=\mathrm{id}_{S}$, so $f^{-1} \circ g^{-1}$ is an inverse for $g \circ f$. By the main theorem on inverses again, $g \circ f$ is bijective.
4. If $m \leq n$, then by definition of \leq there exists $a \in \mathbf{N}$ such that $n=m+a$. Then $n^{2}=n \cdot n=(m+a) \cdot(m+a)=(m+a) \cdot m+(m+a) \cdot a=\left(m^{2}+a m\right)+\left(m a+a^{2}\right)=$ $m^{2}+\left(a m+m a+a^{2}\right)$. Since \mathbf{N} is closed under addition and multiplication by the definitions of these operations, $a m+m a+a^{2} \in \mathbf{N}$, so $m^{2} \leq n^{2}$ by the definition of \leq.
5. Yes: it is reflexive since $x-x=0 \in \mathbf{Z}$, symmetric since $x-y \in \mathbf{Z}$ implies $y-x=$ $-(x-y) \in \mathbb{Z}$ (as taking the negative is an operation $\mathbf{Z} \rightarrow \mathbf{Z}$), and transitive since $x-y \in \mathbf{Z}$ and $y-z \in \mathbf{Z}$ imply $x-z=(x-y)+(y-z) \in \mathbb{Z}$ (as addition is an operation $\mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z})$.
6. Since $a \mid b$, there exists $m \in \mathbf{Z}$ such that $b=a m$, and since $b \mid c$, there exists $n \in \mathbf{Z}$ such that $c=b n$. Then $a+b+c=a+a m+b n=a+a m+(a m) n=a(1+m+m n)$ where $1+m+m n \in \mathbf{Z}$ since \mathbf{Z} is closed under addition and multiplication. Hence $a \mid a+b+c$.
7. By $\mathrm{A} 4 \# 4,(i, n)=1$ if and only if $[i] \in \mathbf{Z}_{n}$ has a reciprocal. Hence there exist $[c],[d] \in \mathbf{Z}_{n}$ such that $[a c]=[a][c]=[1]$ and $[b d]=[b][d]=[1]$ in \mathbf{Z}_{n}. Hence $[a b][c d]=$ $[a b c d]=[a c][b d]=[1][1]=[1] \in \mathbf{Z}_{n}$, so $[a b]$ also has a reciprocal and hence $(a b, n)=1$. Alternative proof: By the main theorem on gcd's, there exist $c, e \in \mathbf{Z}$ such that $a c+n e=1$ and $d, f \in \mathbf{Z}$ such that $b d+n f=1$. Hence $a c=1-n e$ and $b d=1-n f$, so $a b c d=(1-n e)(1-n f)=1-n(e+f-n e f)$, so $(a b)(c d)+n(e+f-n e f)=1$. Hence 1 is the least positive integer of the form $(a b) x+n y$ for $x, y \in \mathbf{Z}$, so by the main theorem on gcd's again, $(a b, n)=1$.
