Mathematics GU4041 Introduction to Modern Algebra

Assignment \#9

Due Wednesday, November 9, 2016

1. Prove that if $\sigma=\left(a_{1} \cdots a_{m}\right) \in \Sigma_{n}$, then for all $i \in\langle m\rangle$, we have $\sigma^{i}\left(a_{k}\right)=a_{j}$ for the unique $j \in\langle m\rangle$ such that $j \equiv k+i(\bmod m)$. Deduce that σ has order $|\sigma|=m$.
2. Prove that the order of $\tau \in \Sigma_{n}$ equals the least common multiple of the lengths of the cycles in its disjoint cycle decomposition.
3. Find all numbers n such that Σ_{7} contains an element of order n.
4. Express $(123)(145)$ and $(123)(125)$ and $(23)(12)(23)$ as products of disjoint cycles. What are their orders?
5. If $\sigma, \tau \in \Sigma_{n}$, and σ has cycle decomposition

$$
\sigma=\left(a_{1} a_{2} \cdots a_{k}\right)\left(b_{1} b_{2} \cdots b_{\ell}\right) \cdots\left(z_{1} z_{2} \cdots z_{m}\right)
$$

prove that $\tau \sigma \tau^{-1}$ has cycle decomposition

$$
\tau \sigma \tau^{-1}=\left(\tau\left(a_{1}\right) \tau\left(a_{2}\right) \cdots \tau\left(a_{k}\right)\right)\left(\tau\left(b_{1}\right) \tau\left(b_{2}\right) \cdots \tau\left(b_{\ell}\right)\right) \cdots\left(\tau\left(z_{1}\right) \tau\left(z_{2}\right) \cdots \tau\left(z_{m}\right)\right)
$$

Hint: a function is determined by its values - so what do both sides do to each element of $\{1, \ldots, n\}$? Consider first $\tau\left(a_{1}\right) \ldots$
6. Let $\sigma=(12)$ and $\tau=(12345) \in \Sigma_{5}$. Prove that $\Sigma_{5}=\langle\{\sigma, \tau\}\rangle$. Hint: use the previous exercise, plus the fact (proved in class) that Σ_{n} is generated by the set of all transpositions.
7. If G is a finite group and $H \triangleleft G$, prove that G has a composition series one of whose terms is H.
8. Let G be a finite group. According to the Jordan-Hölder theorem, if $1 \triangleleft N \triangleleft G$ and $1 \triangleleft H \triangleleft G$ are both composition series for G, then either $N \cong H$ and $G / N \cong G / H$, or $N \cong G / H$ and $G / N \cong H$. But if only one composition series $1 \triangleleft N \triangleleft G$ is given, must there exist a second one $1 \triangleleft H \triangleleft G$ such that $N \cong G / H$ and $G / N \cong H$? Give a proof or counterexample (and prove it is a counterexample!).

