Mathematics GU4041 Introduction to Modern Algebra

Assignment #8 Due October 31, 2016

Recall that H < G means H is a subgroup of G, $H \lhd G$ means H is a normal subgroup of G, and $1 = \{e\}$ is the trivial group. Dummit & Foote's notation slightly differs.

- **1.** Let $\phi : G \to H$ be any homomorphism. Prove that J < H implies $\phi^{-1}(J) < G$ and J < H implies $\phi^{-1}(J) < G$.
- **2.** Prove that a homomorphism $\phi: G \to H$ has ker $\phi = 1$ if and only if it is injective.
- **3.** (a) Prove that any index 2 subgroup H < G is normal. (As in Assignment #6, the index [G:H] is the number of left cosets of H in G.)

(b) Does $K \triangleleft H \triangleleft G$ imply $K \triangleleft G$? Give a proof or counterexample (and prove it is a counterexample!).

- **4.** An *automorphism* of a group G is an isomorphism $G \to G$.
 - (a) Prove that the set Aut G of all automorphisms of G is a group under composition.

(b) Prove that for any $h \in G$, $\phi_h(g) := hgh^{-1}$ is an automorphism. Moreover, $f: G \to \text{Aut } G$ given by $f(h) := \phi_h$ is a homomorphism.

(c) Prove that $f(G) \triangleleft \operatorname{Aut} G$. (The subgroup Inn G := f(G) is called the *inner automorphism* group, and the quotient Out $G := \operatorname{Aut} G/\operatorname{Inn} G$ is called the *outer automorphism* group.)

- 5. Prove that Aut $\mathbf{Z}_n \cong \mathbf{Z}_n^{\times}$. Hint: any automorphism of \mathbf{Z}_n is determined by the image of [1].
- **6.** Prove that for every group G and every $g \in G$, there is an unique homomorphism $\phi : \mathbb{Z} \to G$ such that $\phi(1) = g$.
- 7. Prove that if $N \triangleleft G$ is a normal subgroup of prime index [G : N] = p, and if H < G, then either (i) H < N or (ii) G = HN and $[H : H \cap N] = p$.
- 8. Suppose $M \triangleleft G$ and $N \triangleleft G$, and also that G = MN. Prove that $G/(M \cap N) \cong G/M \times G/N$. Hint: define a homomorphism $\phi : G \to G/M \times G/N$ and apply the first isomorphism theorem.
- **9.** Prove the Fundamental Theorem of Direct Products: Suppose $M \triangleleft G$ and $N \triangleleft G$, and also that G = MN and $M \cap N = 1$. Prove that $G \cong M \times N$.