Mathematics GU4041 Introduction to Modern Algebra

Assignment #6 Due October 17, 2016

A subgroup H of a group G is said to have *finite index* if the set G/H of left H-cosets in G is finite. If so, #(G/H) is called the *index* of H in G and denoted [G:H]. (Dummit & Foote use the notation |G:H|.) Lagrange's theorem may then be written #G = [G:H] #H, for a finite group G.

- **1.** Suppose $H \subset K \subset G$ are subgroups with [G : H] finite. Prove that [G : K] and [K : H] are also finite and [G : H] = [G : K] [K : H]. Do not assume G is finite.
- **2.** Suppose H and K are subgroups of finite index in G such that $H \cap K$ is also of finite index. If [G:H] = m and [G:K] = n, prove that $lcm(m,n) \leq [G:H \cap K] \leq mn$. Deduce that, if m and n are relatively prime (that is, have gcd = 1), then $[G:H \cap K] = [G:H][G:K]$.
- **3.** Prove that if H and K are finite subgroups of G whose orders are relatively prime, then $H \cap K = \{e\}.$
- **4.** Let G be a group. Show that the right translations r_h are the *only* maps $G \to G$ commuting with all left translations ℓ_g . That is, if $f : G \to G$ is a map such that, for all $g \in G$, $f \circ \ell_g = \ell_g \circ f$, then there exists $h \in G$ such that $f = r_h$.
- 5. Let H be a subgroup of G. Define a relation on G by $g \sim g'$ if there exists $h \in H$ such that g' = gh. Prove that this is an equivalence relation whose equivalence classes are the left H-cosets.
- 6. Let H be a subgroup of G. Prove that the map taking x to x^{-1} sends each left H-coset to a right H-coset, and gives a bijection between the left H-cosets and the right H-cosets.
- (a) Show that if p is prime then #Z_p[×] = p − 1. Here Z_n[×] = {[a] ∈ Z_n | [a] has a reciprocal}.
 (b) By considering the order of elements of Z_p[×], prove *Fermat's Little Theorem*: if p is prime, then for all a ∈ Z, a^p ≡ a (mod p).