Mathematics GU4041 Introduction to Modern Algebra

Assignment \#4

Due October 3, 2016
As stated in class, we define $\langle n\rangle=\{i \in \mathbf{N} \mid 0<i \leq n\}$. That is, $\langle n\rangle=\{1, \ldots, n\}$ if $n>0$, while $\langle n\rangle=\varnothing$ if $n=0$.
If S is a finite set, let $\# S$ be the number of elements in the set, that is, the number $n \in \mathbf{N}$ for which S is bijective to $\langle n\rangle$. For example, $\# \varnothing=0$. You may use without proof the following facts: (a) $\# S$ is well-defined, that is, if $\langle m\rangle$ is bijective to $\langle n\rangle$, then $m=n$; (b) if $T \subset S$, then $\#(S \backslash T)=\# S-\# T$. You may prove these things for extra credit if you like; submit them directly to me.
Also, for $n \in \mathbf{Z}$, define the absolute value $|n|$ to be n if $n \geq 0$ and $-n$ if $n \leq 0$. You may use without proof that for all $a, b \in \mathbf{Z}$, we have $|a b|=|a||b|$. (Again, it would be a good optional exercise to prove this.)

1. Prove that for all $n \in \mathbf{Z}, n>0$ implies $n-1 \geq 0$.
2. (Exercise 3 from class) Let $m, n \in \mathbf{Z}$. Prove that $m \mid n$ and $n \neq 0$ imply $m \leq|n|$.

Hint: trichotomy.
3. (Exercise 4 from class) Let $d, a, b \in \mathbf{Z}$. Prove that $d \mid a$ and $d \mid b$ imply that for all $x, y \in \mathbf{Z}$, $d \mid(a x+b y)$.
4. Let $n \in \mathbf{Z}, n>1$. An element $[a] \in \mathbf{Z}_{n}$ is said to have a reciprocal $[b] \in \mathbf{Z}_{n}$ if $[a][b]=[1] \in \mathbf{Z}_{n}$.
(a) Prove that if $(a, n) \neq 1$, then there exists $[c] \in \mathbf{Z}_{n}$ with $[c] \neq[0] \in \mathbf{Z}_{n}$ but $[a][c]=[0] \in \mathbf{Z}_{n}$.
(b) Prove that if $(a, n) \neq 1$, then $[a]$ has no reciprocal in \mathbf{Z}_{n}.
(c) On the other hand, prove that if $(a, n)=1$, then $[a]$ has a reciprocal in \mathbf{Z}_{n}.
5. For $n \in \mathbf{N}$, define the Euler totient function $\phi(n)$ to be the number of integers $a \in\langle n\rangle$ such that the greatest common divisor $(a, n)=1$.
(a) Determine $\phi(n)$ for $n=7,8,9,10,11$, showing (a little of!) your work.
(b) If p is prime and $m \in \mathbf{N}$, prove that $\phi\left(p^{m}\right)=p^{m}-p^{m-1}$.
6. (a) Prove that the number of elements of \mathbf{Z}_{n} having a reciprocal is $\phi(n)$.
(b) If $[a]$ and $[b] \in \mathbf{Z}_{n}$ have reciprocals, prove that $[a][b]$ does too.

