Mathematics GU4041 Introduction to Modern Algebra

Assignment #4 Due October 3, 2016

As stated in class, we define $\langle n \rangle = \{i \in \mathbb{N} \mid 0 < i \leq n\}$. That is, $\langle n \rangle = \{1, \ldots, n\}$ if n > 0, while $\langle n \rangle = \emptyset$ if n = 0.

If S is a finite set, let #S be the number of elements in the set, that is, the number $n \in \mathbb{N}$ for which S is bijective to $\langle n \rangle$. For example, $\#\emptyset = 0$. You may use without proof the following facts: (a) #S is well-defined, that is, if $\langle m \rangle$ is bijective to $\langle n \rangle$, then m = n; (b) if $T \subset S$, then $\#(S \setminus T) = \#S - \#T$. You may prove these things for extra credit if you like; submit them directly to me.

Also, for $n \in \mathbb{Z}$, define the *absolute value* |n| to be n if $n \ge 0$ and -n if $n \le 0$. You may use without proof that for all $a, b \in \mathbb{Z}$, we have |ab| = |a| |b|. (Again, it would be a good optional exercise to prove this.)

- **1.** Prove that for all $n \in \mathbf{Z}$, n > 0 implies $n 1 \ge 0$.
- **2.** (Exercise 3 from class) Let $m, n \in \mathbb{Z}$. Prove that $m \mid n$ and $n \neq 0$ imply $m \leq |n|$. Hint: trichotomy.
- **3.** (Exercise 4 from class) Let $d, a, b \in \mathbb{Z}$. Prove that $d \mid a$ and $d \mid b$ imply that for all $x, y \in \mathbb{Z}$, $d \mid (ax + by)$.
- 4. Let $n \in \mathbb{Z}$, n > 1. An element $[a] \in \mathbb{Z}_n$ is said to have a *reciprocal* $[b] \in \mathbb{Z}_n$ if $[a][b] = [1] \in \mathbb{Z}_n$. (a) Prove that if $(a, n) \neq 1$, then there exists $[c] \in \mathbb{Z}_n$ with $[c] \neq [0] \in \mathbb{Z}_n$ but $[a][c] = [0] \in \mathbb{Z}_n$.
 - (b) Prove that if $(a, n) \neq 1$, then [a] has no reciprocal in \mathbf{Z}_n .
 - (c) On the other hand, prove that if (a, n) = 1, then [a] has a reciprocal in \mathbf{Z}_n .
- 5. For $n \in \mathbf{N}$, define the *Euler totient function* $\phi(n)$ to be the number of integers $a \in \langle n \rangle$ such that the greatest common divisor (a, n) = 1.
 - (a) Determine $\phi(n)$ for n = 7, 8, 9, 10, 11, showing (a little of!) your work.
 - (b) If p is prime and $m \in \mathbf{N}$, prove that $\phi(p^m) = p^m p^{m-1}$.
- 6. (a) Prove that the number of elements of Z_n having a reciprocal is φ(n).
 (b) If [a] and [b] ∈ Z_n have reciprocals, prove that [a][b] does too.