Mathematics GU4041 Introduction to Modern Algebra

Assignment #2 Due September 19, 2016

The Axiom of Powers states the following: if S is any set, there exists a set PS, called the power set of S, such that $x \in PS \Leftrightarrow x \subset S$. That is, the elements of PS are precisely the subsets of S. For example, $P\{1,2\} = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$

Given a map $f: S \to T$, define another map $Pf: PS \to PT$ by the rule $Pf(U) := \{f(x) \mid x \in U\}$ for $U \subset S$. That is, Pf(U) = f(U), where f(U) is the image of U under f as defined in class.

- **1.** (a) Is $P\emptyset = \emptyset$? Why or why not?
 - (b) If $f: S \to T$ is injective, prove that Pf is injective.
 - (c) Prove that $P \operatorname{id}_S = \operatorname{id}_{PS}$.
 - (d) Prove that $P(f \circ g) = Pf \circ Pg$.

(e) If $f: S \to T$ is bijective (i.e. injective and surjective), prove that Pf is bijective. Hint: use the Main Theorem on Inverses and previous parts.

2. (a) Let $S = \{1, 2, 3\}$. Define two specific functions $f : S \to S$ and $g : S \to S$ and show that $g \circ f \neq f \circ g$.

(b) Same thing with S replaced by the real numbers \mathbf{R} (though we haven't defined them rigorously).

- **3.** Prove that $f \circ (g \circ h) = (f \circ g) \circ h$ whenever f, g, h are functions such that both sides are defined.
- **4.** (a) Prove that $g \circ f$ injective implies f injective.
 - (b) However, give an example to show that $g \circ f$ injective does not imply g injective.
 - (c) Prove that $g \circ f$ surjective implies g surjective.

(d) However, give an example to show that $g \circ f$ surjective does not imply f surjective. Hint: could use the same example as in (b).

- 5. (a) Is the restriction of an injective function necessarily injective? Why or why not?
 - (b) Is the restriction of an surjective function necessarily surjective? Why or why not?
- **6.** (a) If $f: S \to T$ and $U \subset S$, prove that $U \subset f^{-1}(f(U))$.
 - (b) Give an example showing that $U \neq f^{-1}(f(U))$ in general.
- **7.** Suppose that $f: S \to T$ and U, V are subsets of S.
 - (a) Prove that $f(U \cup V) = f(U) \cup f(V)$.
 - (b) Prove that $f(U \cap V) \subset f(U) \cap f(V)$.
 - (c) Give an example showing that $f(U \cap V) \neq f(U) \cap f(V)$ in general.