Mathematics GU4041 Introduction to Modern Algebra

Assignment #14 Due December 14, 2016

The following theorem, which was proved in class, should be useful:

Let K act on N and K' act on N' by group automorphisms. If $\psi : N \to N'$ and $\phi : K \to K'$ are isomorphisms satisfying $\psi(k \cdot n) = \phi(k) \cdot \psi(n)$ for all $k \in K$ and $n \in N$, then $\beta : N \rtimes K \to N' \rtimes K'$ defined by $\beta(n,k) := (\psi(n), \phi(k))$ is an isomorphism.

1. Let Bij \mathbf{R}^3 be the group of all bijections $\mathbf{R}^3 \to \mathbf{R}^3$.

(a) Prove that the subset of Bij \mathbf{R}^3 consisting of *translations*, that is, bijections $f(\vec{v}) = \vec{w} + \vec{v}$ for a constant \vec{w} , is a subgroup isomorphic to the additive group \mathbf{R}^3 . Hint: realize it as the image of a homomorphism.

(b) Prove that the subset $SO(3) \subset \text{Bij } \mathbb{R}^3$ consisting of *rotations*, that is, bijections $f(\vec{v}) = A\vec{v}$ for a 3×3 matrix A such that $A^T A = I$ and det A = 1, is also a subgroup.

(c) Define an action of SO(3) on \mathbb{R}^3 by group automorphisms and prove that the subset Aff $\mathbb{R}^3 \subset \text{Bij } \mathbb{R}^3$ consisting of bijections $f(\vec{v}) = \vec{w} + A\vec{v}$ is a subgroup isomorphic to a semidirect product $\mathbb{R}^3 \rtimes SO(3)$.

- **2.** Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Prove that any permutation of the 3 non-identity elements of G defines an automorphism, so that Aut $G \cong \Sigma_3$.
- **3.** Prove that $\mathbf{Z}_5^{\times} \cong \mathbf{Z}_4$. (In fact, we'll prove next semester that \mathbf{Z}_n^{\times} is cyclic whenever *n* is a prime power.)
- 4. Let p < q be two primes. Show that any group of order pq is isomorphic to a semidirect product $\mathbf{Z}_q \rtimes \mathbf{Z}_p$ for some action of \mathbf{Z}_p on \mathbf{Z}_q .
- 5. Classify all of the groups of order 55 up to isomorphism. How many are there? Which are abelian?
- 6. Classify all of the groups of order 20 up to isomorphism. How many are there? Which are abelian?