# Mathematics GU4041 Introduction to Modern Algebra 

Assignment \#13
Due December 7, 2016

1. List all 12 elements of $A_{4}$. Show that $A_{4}$ is not simple by exhibiting a proper normal subgroup. Hint: look back at the classification of groups of order 12.
2. (a) For $n \geq 3$, show that $\Sigma_{n}$ has no normal subgroup of order 2 .
(Careful, it says order 2, not index 2 !)
(b) For $n \geq 5$, show that $A_{n}$ and 1 are the only proper normal subgroups of $\Sigma_{n}$. Hint: use the Second Isomorphism Theorem.
3. (a) Show that the center of a direct product is the direct product of the centers:

$$
Z\left(G_{1} \times \cdots \times G_{n}\right)=Z G_{1} \times \cdots \times Z G_{n}
$$

(b) Show that $G_{1} \times \cdots \times G_{n}$ is abelian if and only if each $G_{i}$ is.
4. (a) For $A$ an abelian group and $n \in \mathbf{N}$, show that the set $A(n)$ of all elements whose order is finite and divides $n$ is a subgroup.
(b) If $A \cong B$, show that $A(n) \cong B(n)$.
(c) Show that $\mathbf{Z}_{2} \times \mathbf{Z}_{2} \times \mathbf{Z}_{4} \neq \mathbf{Z}_{4} \times \mathbf{Z}_{4}$.
5. Show, using the classification of finite abelian groups, that there are exactly 10 isomorphism classes of abelian groups of order 400. Hint: what are the possible Sylow subgroups?
6. Show, using the classification of finite abelian groups, that any finite abelian group is either cyclic or contains a subgroup isomorphic to $\mathbf{Z}_{p} \times \mathbf{Z}_{p}$ for some prime $p$.

