Mathematics GU4041
Introduction to Modern Algebra
Assignment #13
Due December 7, 2016

1. List all 12 elements of \(A_4 \). Show that \(A_4 \) is not simple by exhibiting a proper normal subgroup.
 Hint: look back at the classification of groups of order 12.

2. (a) For \(n \geq 3 \), show that \(\Sigma_n \) has no normal subgroup of order 2.
 (Careful, it says order 2, not index 2!)
 (b) For \(n \geq 5 \), show that \(A_n \) and 1 are the only proper normal subgroups of \(\Sigma_n \).
 Hint: use the Second Isomorphism Theorem.

3. (a) Show that the center of a direct product is the direct product of the centers:
 \[Z(G_1 \times \cdots \times G_n) = ZG_1 \times \cdots \times ZG_n. \]
 (b) Show that \(G_1 \times \cdots \times G_n \) is abelian if and only if each \(G_i \) is.

4. (a) For \(A \) an abelian group and \(n \in \mathbb{N} \), show that the set \(A(n) \) of all elements whose order is finite and divides \(n \) is a subgroup.
 (b) If \(A \cong B \), show that \(A(n) \cong B(n) \).
 (c) Show that \(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4 \not\cong \mathbb{Z}_4 \times \mathbb{Z}_4 \).

5. Show, using the classification of finite abelian groups, that there are exactly 10 isomorphism classes of abelian groups of order 400. Hint: what are the possible Sylow subgroups?

6. Show, using the classification of finite abelian groups, that any finite abelian group is either cyclic or contains a subgroup isomorphic to \(\mathbb{Z}_p \times \mathbb{Z}_p \) for some prime \(p \).