Mathematics GU4041 Introduction to Modern Algebra

Assignment \#12

Due November 30, 2016
Throughout, p denotes a prime number.

1. How many elements of order 5 are contained in a group of order 20 ? Why?
2. Let G be a p-group. Show that every composition factor of G is isomorphic to \mathbf{Z}_{p}.
3. Show that a group of order 132 is never simple.
4. Determine all groups of order 33 up to isomorphism.
5. Suppose that the prime $p \neq 2$.
(a) Show that $k^{2} \equiv 1(\bmod p)$ has only 2 solutions $\bmod p$.
(b) Show the only automorphisms $\phi: \mathbf{Z}_{p} \rightarrow \mathbf{Z}_{p}$ with $\phi \circ \phi=\operatorname{id}$ are $\phi(g)=g^{ \pm 1}$. Hint: use (a).
(c) Show that any group of order $2 p$ is isomorphic either to $\mathbf{Z}_{2} \times \mathbf{Z}_{p}$ or to $D_{2 p}$. Hint: use (b).
6. Let N be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that $H \cap N$ is the unique Sylow p-subgroup of H.
