Mathematics GU4041 Introduction to Modern Algebra

Assignment \#11

Due November 23, 2016

1. Prove that the center $Z G$ is a normal subgroup of G.
2. If the index $[G: Z G]=n$, prove that every conjugacy class in G has at most n elements.
3. Let T be a regular tetrahedron. Following the example of the cube done in class, (a) using the counting formula, determine the order of the group G of rotations of T, (b) using Burnside's lemma, compute the number of ways to color the faces of T with 3 colors, up to rotational equivalence; (c) same thing for n colors.
4. Let $m \leq n \in \mathbf{N}$. Say that a subset $S \subset\langle n\rangle$ is fixed by a permutation $\sigma \in \Sigma_{n}$ if $\sigma(S)=S$. Prove that the average, over all $\sigma \in \Sigma_{n}$, of the number of subsets with exactly m elements fixed by σ is 1 . (Of course, for many σ the number will be 0 .)
5. Using Burnside's lemma or otherwise, prove that the number of conjugacy classes in the dihedral group $D_{2 n}$ is $(n+3) / 2$ if n is odd, $(n+6) / 2$ if n is even.
6. Describe, with proof, all of the finite groups having exactly two conjugacy classes.
