Mathematics GU4041 Introduction to Modern Algebra

Assignment \#1

Due September 12, 2016
Before doing anything else, read the syllabus carefully and thoroughly.
In problems 1-4, write careful proofs of the statements given. Follow the style used in class consisting of complete sentences in the English language. Every statement should have a reason, such as a definition or a proposition stated in class. Do not use truth tables except where asked to do so. Hint: to prove \Leftrightarrow, it suffices to prove first \Rightarrow and then \Leftarrow.

1. Prove that $P \vee \sim P$ (regardless of the truth value of P).
2. Prove that $\sim(P \wedge Q) \Leftrightarrow(\sim P \vee \sim Q)$ (regardless of the truth values of P and Q). Also make a truth table showing all possibilities for $P, Q, \sim P, \sim Q, P \wedge Q$, and the two sides of the biconditional above.
3. If $P \Rightarrow Q$ is any conditional statement, there are three other related conditional statements: (i) the converse $Q \Rightarrow P$, (ii) the inverse $\sim P \Rightarrow \sim Q$, and (iii) the contrapositive $\sim Q \Rightarrow \sim P$.
(a) Prove that $(P \Rightarrow Q) \Leftrightarrow(\sim Q \Rightarrow \sim P)$ (regardless... $)$.

That is, an implication has the same truth value as its contrapositive.
(b) Give examples of P and Q such that $P \Rightarrow Q$ is true but $Q \Rightarrow P$ is false.

That is, an implication need not have the same truth value as its converse.
(c) Give examples of P and Q such that $P \Rightarrow Q$ is true but $\sim P \Rightarrow Q$ is false. That is, an implication need not have the same truth value as its inverse.
4. Proof by cases: if $P \Rightarrow R, Q \Rightarrow R$, and $P \vee Q$ are all true, then so is R.
5. Write the negation of the statement $\forall x \in S \exists y \in T \mid(P(x, y) \wedge Q(x, y))$ in terms of $\sim P(x, y)$ and $\sim Q(x, y)$. Make up a sentence in natural language (i.e. everyday speech) that has the form above. Also write its negation in natural language.

Hint for problems 7-9: use the definition of set equality.
7. Suppose S is any set.
(a) Prove that $\varnothing \subset S$.
(b) Is it necessarily true that $\varnothing \in S$? Give either a proof or a counterexample (i.e. a specific S where you prove $\varnothing \notin S)$.
(c) Is it necessarily true that $\varnothing \notin S$? Again, give either a proof or a counterexample.
(d) Prove that if $S \subset \varnothing$, then $S=\varnothing$.
8. For a set A, prove that $A \cup \varnothing=A$.
9. For sets A, B, prove that $A=(A \backslash B) \cup(A \cap B)$. Also illustrate this with a Venn diagram.

