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1. Every finite group G has a composition series, that is, a sequence of subgroups 1 = G0CG1C· · ·C
Gn = G such that each Gi/Gi−1 is simple. Although this is not unique, any other composition
series 1 = H0 C H1 C · · · C Hn = G has the same length n, and there exists σ ∈ Σn such that
Gi/Gi−1 ∼= Hσ(i)/Hσ(i)−1 for each i ∈ 〈n〉.

2. If φ is a homomorphism, then for all g, h ∈ G we have gh = (g−1)−1(h−1)−1 = φ(g−1)φ(h−1) =
φ(g−1h−1) = (g−1h−1)−1 = (h−1)−1(g−1)−1 = hg, so G is abelian. Conversely, if G is abelian,
then φ(gh) = (gh)−1 = h−1g−1 = g−1h−1 = φ(g)φ(h), so φ is a homomorphism.

3. Since S = gSg−1, for every s ∈ S, we have gsg−1 ∈ S as well. Hence if s−1 is the inverse of an
element in S, then gs−1g−1 = (gsg−1)−1 is also the inverse of an element in S. Let

∏k
i=1 si be

an element of 〈S〉, that is, a product of elements in S and their inverses. Then, by the foregoing,
g(
∏k
i=1 si)g

−1 =
∏k
i=1(gsig

−1) is also a product of elements in S and their inverses. Hence
g〈S〉g−1 ⊂ 〈S〉, that is, 〈S〉 is normal.

4. (a) Since every conjugate of a k-cycle in Σn is another k-cycle, gSkg
−1 = Sk for all g ∈ Σn. The

statement therefore follows from the previous problem.

(b) If k is odd, then every k-cycle has sign +1, so Sk ⊂ An and hence Gk < An. By (a), 〈Sk〉CΣn,
so Gk C An. But An is simple for n ≥ 5, so Gk = 1 or An. Clearly Gk 6= 1 as it contains a
nontrivial cycle! Hence Gk = An.

(c) By (a) and the second isomorphism theorem, Gk ∩ An C An, hence equals 1 or An. But the
left-hand side certainly contains a non-trivial element, such as any product gh−1 for g 6= h ∈ Sk,
so Gk ∩An = An, that is, An < Gk < Σn. But An 6= Gk since the latter contains k-cycles. Hence
[Σn : Gk] < [Σn : An] = 2, so that [Σn : Gk] = 1 and Σn = Gk.

Note: the statement is still true for n < 5. In fact, since we already proved that Σn and An are
generated by bicycles and tricycles, respectively, the only remaining part is checking that Σ4 is
generated by 4-cycles, which can be done by hand.

5. The series is 1 C 〈(12)(34)〉 C 〈(12)(34), (13)(24), (14)(23)〉 C A4 C Σ4. Here each subgroup is
normal because it has index 2, except for 〈(12)(34), (13)(24), (14)(23)〉 < A4 which is of index 3,
but 〈(12)(34), (13)(24), (14)(23)〉C Σ4 by problem 3. And the composition factors are all simple
since they are of prime order (2 or 3), hence cyclic.

6. (a) If f : Z → Z is any homomorphism, let k = f(1) ∈ Z. Then for all i ∈ Z, f(i) = if(1) = ki.
If f has an inverse g, it is likewise of the form g(i) = `i, and then i = fg(i) = k`i, so k` = 1 and
hence k = ±1. Hence Aut Z = {±1} ∼= Z2.

(b) Any automorphism of Z2 must take the identity [0] to [0], so as a bijection it must also take
the only other element [1] to [1]. Hence Aut Z2 = 1.

(c) A semidirect product ZoZ2 is determined by an action of Z2 on Z by group automorphisms,
that is, a homomorphism Z2 → Aut Z. By (a) there is a nontrivial such homomorphism, so there
is a semidirect product in which Z2 acts nontrivially on Z by conjugation, which is therefore
nonabelian. (In fact, it is the group of all functions g : Z→ Z of the form g(i) = ai+b for a = ±1
and b ∈ Z.)

(d) Likewise, a semidirect product Z2 o Z is determined by a homomorphism Z → Aut Z2, but
by (b) these are all trivial, so the semidirect product is a direct product Z2 × Z, hence abelian.
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7. The Sylow p-subgroups are finite in number, and every conjugate of a Sylow p-subgroup is a
Sylow p-subgroup. So if S = {H1, . . . ,Hn} is the set of Sylow p-subgroups, then conjugation by
g defines a function from S to itself. It is a bijection, as its inverse is conjugation by g−1. Hence
for every g ∈ G there exists σ ∈ Σn such that gHig

−1 = Hσ(i). Then

g(H1 ∩ · · · ∩Hn)g−1 = (gH1g
−1) ∩ · · · ∩ (gHng

−1) = Hσ(1) ∩ · · · ∩Hσ(n) = H1 ∩ · · · ∩Hn.

8. If p is prime and [a] 6= [0] ∈ Zp, then {0} 6= 〈[a]〉 < Zp, so 1 6= #〈[a]〉 | p by Lagrange, so
#〈[a]〉 = p and hence 〈[a]〉 = Zp. On the other hand, if n is composite, say n = k` with k, ` > 1,
then 〈[k]〉 = kZn 6= Zn.

9. (a) Every element of Σp may be expressed as a product of disjoint cycles, and its order is then the
least common multiple of the lengths of those cycles. The only way to express a prime p as a least
common multiple of numbers adding to p is as p itself. So the elements of order p are exactly the
p-cycles and may be expressed as (σ(1)σ(2) · · ·σ(n)) for some σ ∈ Σn, unique up to reordering
and recycling. Since there is only one cycle, reordering is trivial. Recycling shows that each
such cycle may be expressed in exactly p ways as (σ(1)σ(2) · · ·σ(n)), (σ(2)σ(3) · · ·σ(n)σ(1)),
(σ(3)σ(4) · · ·σ(n)σ(1)σ(2)), and so on. So the total number is #Σn/p = p!/p = (p− 1)!.

(b) Since p! is divisible by p but not p2, the Sylow p-subgroups have order p and are hence cyclic.
By the previous problem, each one is generated by any of its nontrivial elements, of which there
are p− 1. The total number is therefore (p− 1)!/(p− 1) = (p− 2)!.

10. Let G be a group of order 15. By the third Sylow theorem, the number of Sylow 3-subgroups
divides 5 and is congruent to 1 mod 3, so it is 1. Likewise, the number of Sylow 5-subgroups
divides 3 and is congruent to 1 mod 5, so it is also 1. Hence both S3 and S5 are normal. We know
that G = S3S5 and that S3 ∩ S5 = 1 (since its order divides both 3 and 5 by Lagrange). By the
Main Theorem on Direct Products, G ∼= Z3 × Z5 (so in fact G ∼= Z15 by the Chinese Remainder
Theorem). There is only one isomorphism class.

11. By the classification of finite abelian groups, any such group is isomorphic to a product of cyclic
groups of prime power order. Since 36 = 2232, this must be (a) Z4 × Z9, (b) Z2 × Z2 × Z9, (c)
Z4 × Z3 × Z3, or (d) Z2 × Z2 × Z3 × Z3. These four groups are not isomorphic to each other,
since (for example) (a) has an element of order 4 but (b) does not. There are four isomorphism
classes.

12. Let S be the set of all functions {1, 2, 3, 4, 5, 6, 7} → {B,W}. The colorings of the necklace
correspond to elements of this set. It is acted upon by the dihedral group D14, and we need to
count the number of orbits. By Burnside’s lemma, this is given by
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#D14

∑
g∈D14

#Sg.

The identity fixes all 27 functions. Since 7 is prime, any of the 6 other rotations generates Z7,
which acts transitively on the set {1, 2, 3, 4, 5, 6, 7}. Hence the rotation fixes only 2 necklaces,
the all-black and all-white ones. The other 7 elements are all reflections in an axis through one
bead, as shown. They fix the 24 necklaces having the same colors on opposite pairs of beads. The
grand total is therefore (27 + 6 · 2 + 7 · 24)/14 = (64 + 6 + 56)/7 = 18.
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