Mathematics GU4041
 Introduction to Modern Algebra

Answers to Final Exam

December 20, 2016

1. Every finite group G has a composition series, that is, a sequence of subgroups $1=G_{0} \triangleleft G_{1} \triangleleft \cdots \triangleleft$ $G_{n}=G$ such that each G_{i} / G_{i-1} is simple. Although this is not unique, any other composition series $1=H_{0} \triangleleft H_{1} \triangleleft \cdots \triangleleft H_{n}=G$ has the same length n, and there exists $\sigma \in \Sigma_{n}$ such that $G_{i} / G_{i-1} \cong H_{\sigma(i)} / H_{\sigma(i)-1}$ for each $i \in\langle n\rangle$.
2. If ϕ is a homomorphism, then for all $g, h \in G$ we have $g h=\left(g^{-1}\right)^{-1}\left(h^{-1}\right)^{-1}=\phi\left(g^{-1}\right) \phi\left(h^{-1}\right)=$ $\phi\left(g^{-1} h^{-1}\right)=\left(g^{-1} h^{-1}\right)^{-1}=\left(h^{-1}\right)^{-1}\left(g^{-1}\right)^{-1}=h g$, so G is abelian. Conversely, if G is abelian, then $\phi(g h)=(g h)^{-1}=h^{-1} g^{-1}=g^{-1} h^{-1}=\phi(g) \phi(h)$, so ϕ is a homomorphism.
3. Since $S=g S g^{-1}$, for every $s \in S$, we have $g s g^{-1} \in S$ as well. Hence if s^{-1} is the inverse of an element in S, then $g s^{-1} g^{-1}=\left(g s g^{-1}\right)^{-1}$ is also the inverse of an element in S. Let $\prod_{i=1}^{k} s_{i}$ be an element of $\langle S\rangle$, that is, a product of elements in S and their inverses. Then, by the foregoing, $g\left(\prod_{i=1}^{k} s_{i}\right) g^{-1}=\prod_{i=1}^{k}\left(g s_{i} g^{-1}\right)$ is also a product of elements in S and their inverses. Hence $g\langle S\rangle g^{-1} \subset\langle S\rangle$, that is, $\langle S\rangle$ is normal.
4. (a) Since every conjugate of a k-cycle in Σ_{n} is another k-cycle, $g S_{k} g^{-1}=S_{k}$ for all $g \in \Sigma_{n}$. The statement therefore follows from the previous problem.
(b) If k is odd, then every k-cycle has sign +1 , so $S_{k} \subset A_{n}$ and hence $G_{k}<A_{n}$. By (a), $\left\langle S_{k}\right\rangle \triangleleft \Sigma_{n}$, so $G_{k} \triangleleft A_{n}$. But A_{n} is simple for $n \geq 5$, so $G_{k}=1$ or A_{n}. Clearly $G_{k} \neq 1$ as it contains a nontrivial cycle! Hence $G_{k}=A_{n}$.
(c) By (a) and the second isomorphism theorem, $G_{k} \cap A_{n} \triangleleft A_{n}$, hence equals 1 or A_{n}. But the left-hand side certainly contains a non-trivial element, such as any product $g h^{-1}$ for $g \neq h \in S_{k}$, so $G_{k} \cap A_{n}=A_{n}$, that is, $A_{n}<G_{k}<\Sigma_{n}$. But $A_{n} \neq G_{k}$ since the latter contains k-cycles. Hence $\left[\Sigma_{n}: G_{k}\right]<\left[\Sigma_{n}: A_{n}\right]=2$, so that $\left[\Sigma_{n}: G_{k}\right]=1$ and $\Sigma_{n}=G_{k}$.
Note: the statement is still true for $n<5$. In fact, since we already proved that Σ_{n} and A_{n} are generated by bicycles and tricycles, respectively, the only remaining part is checking that Σ_{4} is generated by 4 -cycles, which can be done by hand.
5. The series is $1 \triangleleft\langle(12)(34)\rangle \triangleleft\langle(12)(34),(13)(24),(14)(23)\rangle \triangleleft A_{4} \triangleleft \Sigma_{4}$. Here each subgroup is normal because it has index 2 , except for $\langle(12)(34),(13)(24),(14)(23)\rangle<A_{4}$ which is of index 3 , but $\langle(12)(34),(13)(24),(14)(23)\rangle \triangleleft \Sigma_{4}$ by problem 3. And the composition factors are all simple since they are of prime order (2 or 3), hence cyclic.
6. (a) If $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is any homomorphism, let $k=f(1) \in \mathbb{Z}$. Then for all $i \in \mathbb{Z}, f(i)=i f(1)=k i$. If f has an inverse g, it is likewise of the form $g(i)=\ell i$, and then $i=f g(i)=k \ell i$, so $k \ell=1$ and hence $k= \pm 1$. Hence Aut $\mathbb{Z}=\{ \pm 1\} \cong \mathbb{Z}_{2}$.
(b) Any automorphism of \mathbb{Z}_{2} must take the identity [0] to [0], so as a bijection it must also take the only other element [1] to [1]. Hence Aut $\mathbb{Z}_{2}=1$.
(c) A semidirect product $\mathbb{Z} \rtimes \mathbb{Z}_{2}$ is determined by an action of \mathbb{Z}_{2} on \mathbb{Z} by group automorphisms, that is, a homomorphism $\mathbb{Z}_{2} \rightarrow$ Aut \mathbb{Z}. By (a) there is a nontrivial such homomorphism, so there is a semidirect product in which \mathbb{Z}_{2} acts nontrivially on \mathbb{Z} by conjugation, which is therefore nonabelian. (In fact, it is the group of all functions $g: \mathbb{Z} \rightarrow \mathbb{Z}$ of the form $g(i)=a i+b$ for $a= \pm 1$ and $b \in \mathbb{Z}$.)
(d) Likewise, a semidirect product $\mathbb{Z}_{2} \rtimes \mathbb{Z}$ is determined by a homomorphism $\mathbb{Z} \rightarrow$ Aut \mathbb{Z}_{2}, but by (b) these are all trivial, so the semidirect product is a direct product $\mathbb{Z}_{2} \times \mathbb{Z}$, hence abelian.
7. The Sylow p-subgroups are finite in number, and every conjugate of a Sylow p-subgroup is a Sylow p-subgroup. So if $S=\left\{H_{1}, \ldots, H_{n}\right\}$ is the set of Sylow p-subgroups, then conjugation by g defines a function from S to itself. It is a bijection, as its inverse is conjugation by g^{-1}. Hence for every $g \in G$ there exists $\sigma \in \Sigma_{n}$ such that $g H_{i} g^{-1}=H_{\sigma(i)}$. Then

$$
g\left(H_{1} \cap \cdots \cap H_{n}\right) g^{-1}=\left(g H_{1} g^{-1}\right) \cap \cdots \cap\left(g H_{n} g^{-1}\right)=H_{\sigma(1)} \cap \cdots \cap H_{\sigma(n)}=H_{1} \cap \cdots \cap H_{n} .
$$

8. If p is prime and $[a] \neq[0] \in \mathbb{Z}_{p}$, then $\{0\} \neq\langle[a]\rangle<\mathbb{Z}_{p}$, so $1 \neq \#\langle[a]\rangle \mid p$ by Lagrange, so $\#\langle[a]\rangle=p$ and hence $\langle[a]\rangle=\mathbb{Z}_{p}$. On the other hand, if n is composite, say $n=k \ell$ with $k, \ell>1$, then $\langle[k]\rangle=k \mathbb{Z}_{n} \neq \mathbb{Z}_{n}$.
9. (a) Every element of Σ_{p} may be expressed as a product of disjoint cycles, and its order is then the least common multiple of the lengths of those cycles. The only way to express a prime p as a least common multiple of numbers adding to p is as p itself. So the elements of order p are exactly the p-cycles and may be expressed as $(\sigma(1) \sigma(2) \cdots \sigma(n))$ for some $\sigma \in \Sigma_{n}$, unique up to reordering and recycling. Since there is only one cycle, reordering is trivial. Recycling shows that each such cycle may be expressed in exactly p ways as $(\sigma(1) \sigma(2) \cdots \sigma(n))$, $(\sigma(2) \sigma(3) \cdots \sigma(n) \sigma(1))$, $(\sigma(3) \sigma(4) \cdots \sigma(n) \sigma(1) \sigma(2))$, and so on. So the total number is $\# \Sigma_{n} / p=p!/ p=(p-1)!$.
(b) Since p ! is divisible by p but not p^{2}, the Sylow p-subgroups have order p and are hence cyclic. By the previous problem, each one is generated by any of its nontrivial elements, of which there are $p-1$. The total number is therefore $(p-1)!/(p-1)=(p-2)!$.
10. Let G be a group of order 15. By the third Sylow theorem, the number of Sylow 3-subgroups divides 5 and is congruent to $1 \bmod 3$, so it is 1 . Likewise, the number of Sylow 5 -subgroups divides 3 and is congruent to $1 \bmod 5$, so it is also 1 . Hence both S_{3} and S_{5} are normal. We know that $G=S_{3} S_{5}$ and that $S_{3} \cap S_{5}=1$ (since its order divides both 3 and 5 by Lagrange). By the Main Theorem on Direct Products, $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{5}$ (so in fact $G \cong \mathbb{Z}_{15}$ by the Chinese Remainder Theorem). There is only one isomorphism class.
11. By the classification of finite abelian groups, any such group is isomorphic to a product of cyclic groups of prime power order. Since $36=2^{2} 3^{2}$, this must be (a) $\mathbb{Z}_{4} \times \mathbb{Z}_{9}$, (b) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{9}$, (c) $\mathbb{Z}_{4} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, or (d) $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. These four groups are not isomorphic to each other, since (for example) (a) has an element of order 4 but (b) does not. There are four isomorphism classes.
12. Let S be the set of all functions $\{1,2,3,4,5,6,7\} \rightarrow\{B, W\}$. The colorings of the necklace correspond to elements of this set. It is acted upon by the dihedral group D_{14}, and we need to count the number of orbits. By Burnside's lemma, this is given by

$$
\frac{1}{\# D_{14}} \sum_{g \in D_{14}} \# S^{g}
$$

The identity fixes all 2^{7} functions. Since 7 is prime, any of the 6 other rotations generates \mathbb{Z}_{7}, which acts transitively on the set $\{1,2,3,4,5,6,7\}$. Hence the rotation fixes only 2 necklaces, the all-black and all-white ones. The other 7 elements are all reflections in an axis through one bead, as shown. They fix the 2^{4} necklaces having the same colors on opposite pairs of beads. The grand total is therefore $\left(2^{7}+6 \cdot 2+7 \cdot 2^{4}\right) / 14=(64+6+56) / 7=18$.

