Mathematics W4041x Introduction to Modern Algebra

Practice Midterm \#2

November 18, 2010

1. State the third isomorphism theorem.
2. Prove that every group of prime order is cyclic.
3. Prove that the subset H of matrices in $G=G L(n, \mathbf{Q})$ whose determinant is positive is a normal subgroup, and describe the quotient group G / H.
4. Give a composition series for D_{12}, the symmetry group of a regular hexagon (and prove that it is a composition series).
5. (a) Prove that the quaternion group Q is isomorphic to a subgroup of the symmetric group Σ_{8}.
(b) Prove, however, that Q is not isomorphic to a subgroup of Σ_{n} for any $n<8$. (Hint: show that if Q acts on any set with <8 elements, then -1 must act trivially.)
6. Prove that if G is simple and $\phi: G \rightarrow \Sigma_{n}$ is a homomorphism, then either $G \cong \mathbb{Z}_{2}$ or $\phi(G) \subset A_{n}$. Here Σ_{n} is the symmetric group, A_{n} the alternating group.
7. A company manufactures 3×3 tiles marked with the letters A and B. They want all periodic patterns (with period 3) to be constructible from their tiles. (See the example below.) However, they do not have to make all 2^{9} possibilities: the seams between the tiles are barely visible, so the two configurations shown are equivalent. How many different types of tile do they have to keep in stock?

A	B	B	A	B	B	A	B	B
A	B	A	A	B	A	A	B	A
B	B	B	B	B	B	B	B	B
A	B	B	A	B	B	A	B	B
A	B	A	A	B	A	A	B	A
B	B	B	B	B	B	B	B	B
A	B	B	A	B	B	A	B	B
A	B	A	A	B	A	A	B	A
B	B	B	B	B	B	B	B	B

A	B	B	A	B	B	A	B	B
A	B	A	A	B	A	A	B	A
B	B	B	B	B	B	B	B	B
A	B	B	A	B	B	A	B	B
A	B	A	A	B	A	A	B	A
B	B	B	B	B	B	B	B	B
A	B	B	A	B	B	A	B	B
A	B	A	A	B	A	A	B	A
B	B	B	B	B	B	B	B	B

