Mathematics W4041x
 Introduction to Modern Algebra

Answers to Midterm Exam \#2

November 18, 2010

1. If G is a group, H and N subgroups with $N \triangleleft G$, then $H N$ is a subgroup, $N \triangleleft H N$, $H \cap N \triangleleft H$, and $H /(H \cap N) \cong H N / N$.
2. If $G \not \approx 1$, then there exists $g \in G$ such that $g \neq e$. The subgroup $\langle g\rangle$ generated by g is not 1 , so it must be G. We know that every cyclic subgroup (that is, every subgroup generated by a single element) is isomorphic either to \mathbb{Z} or to \mathbb{Z}_{n} for some n (Assignment $7 \# 1$). But \mathbb{Z} has the nontrivial proper subgroup $2 \mathbb{Z}$, while \mathbb{Z}_{n} for $n=a b$ composite has the nontrivial proper subgroup $a \mathbb{Z}_{n}$. The only remaining possibility is $G \cong \mathbb{Z}_{p}$ for p prime.
3. Suppose $n \in N_{1} \cap N_{2}$ and $g \in G$. Since $N_{1} \triangleleft G$, $g n g^{-1} \in N_{1}$. Likewise, since $N_{2} \triangleleft G$, $g n g^{-1} \in N_{2}$. Hence $g n g^{-1} \in N_{1} \cap N_{2}$. So $N_{1} \cap N_{2} \triangleleft G$.

Alternative: Let $\pi_{1}: G \rightarrow G / N_{1}$ and $\pi_{2}: G \rightarrow G / N_{2}$ be the projection homomorphisms. Then $N_{1} \cap N_{2}=\operatorname{ker}\left(\pi_{1} \times \pi_{2}\right): G \rightarrow G / N_{1} \times G / N_{2}$, and all kernels are normal.
4. By the first isomorphism theorem, $\phi(G) \cong G / \operatorname{ker} \phi$, so $\# G=\# \phi(G) \#$ ker ϕ and hence $\# \phi(G) \mid \# G$. And $\phi(G)$ is a subgroup of H, so by Lagrange's theorem $\# \phi(G) \mid \# H$ also. But $(\# G, \# H)=1$, so $\# \phi(G)=1$ and $\phi(G)=\{e\}$.
5. Since x and y are in the same orbit, there exists $g \in G$ such that $y=g \cdot x$. Then $h \in G_{y} \Leftrightarrow h \cdot y=y \Leftrightarrow h \cdot(g \cdot x)=g \cdot x \Leftrightarrow g^{-1} \cdot(h \cdot(g \cdot x))=x \Leftrightarrow\left(g^{-1} h g\right) \cdot x=x \Leftrightarrow$ $g^{-1} h g \in G_{x} \Leftrightarrow h \in g G_{x} g^{-1}$.
6. Let $\phi_{1}(g):=\phi(g, e)$ and $\phi_{2}(g):=\phi(e, g)$. Then $\phi_{1}(g h)=\phi(g h, e)=\phi((g, e)(h, e))=$ $\phi(g, e) \phi(h, e)=\phi_{1}(g) \phi_{2}(g)$, so ϕ_{1} is a homomorphism, and similarly for ϕ_{2}. And $\phi\left(g_{1}, g_{2}\right)=\phi\left(\left(g_{1}, e\right)\left(e, g_{2}\right)\right)=\phi\left(g_{1}, e\right) \phi\left(e, g_{2}\right)=\phi_{1}\left(g_{1}\right) \phi_{2}\left(g_{2}\right)$, but also $\phi\left(g_{1}, g_{2}\right)=$ $\phi\left(\left(e, g_{2}\right)\left(g_{1}, e\right)\right)=\phi\left(e, g_{2}\right) \phi\left(g_{1}, e\right)=\phi_{2}\left(g_{2}\right) \phi_{1}\left(g_{1}\right)$.
7. Let S be the set of all functions $\{1,2,3,4,5,6,7\} \rightarrow\{B, W\}$. The colorings of the necklace correspond to elements of this set. It is acted upon by the dihedral group D_{14}, and we need to count the number of orbits. By Burnside's lemma, this is given by

$$
\frac{1}{\# D_{14}} \sum_{g \in D_{14}} \# S^{g}
$$

The identity fixes all 2^{7} functions. Since 7 is prime, any other rotation generates \mathbb{Z}_{7}, which acts transitively on the set $\{1,2,3,4,5,6,7\}$. Hence the rotation fixes only 2 necklaces, the all-black and all-white ones. The other 7 elements are all reflections in an axis through one bead, as shown. They fix the 2^{4} necklaces having the same colors on opposite pairs of beads. The grand total is therefore $\left(2^{7}+6 \cdot 2+7 \cdot 2^{4}\right) / 14=$ $(64+6+56) / 7=18$.

