In what follows, you may assume anything stated in class except what is being asked: notably, the associative, commutative, and distributive properties of multiplication.

1. Recall that the three Peano axioms, as stated in class, were roughly: (P1) 1 is not a successor; (P2) the successor function is injective; (P3) the axiom of induction. For each \(i = 1, 2, 3 \), define a set \(N_i \), an element \(1_i \), and a function \(f_i : N_i \to N_i \), and prove that it does not satisfy the \(i \)th Peano axiom but does satisfy the other two. Are such sets unique in the same way that \(N \) is?

2. The well-ordering principle says that every nonempty subset of \(N \) contains a least element. Prove that this element is unique.

3. Prove that \(N \) has no greatest element, that is, no element greater than or equal to every element of \(N \).

4. Prove that for all \(x \in N \), \(x \geq 1 \).

5. Prove that for all \(x, y \in N \), \(x > y \) implies \(x \geq y + 1 \).

6. (a) Prove that for all \(x, y, z \in N \), \(y < z \) implies \(xy < xz \).
 (b) Prove that for all \(x, y, z \in N \), \(y \leq z \) implies \(xy \leq xz \).

7. For \(x, y \in N \), propose a rule to define \(x^y \) similar to those for \(x + y \) and \(x \cdot y \) given in class. (You don’t have to prove that it exists, though it would follow the argument for \(x + y \) straightforwardly.)

8. A sequence of natural numbers is just a function \(a : N \to N \). Its values \(a(i) \) are frequently denoted \(a_i \). For example, \(a_i = i^2 + 1 \). For such a sequence, we may define \(\sum_{i=1}^{n} a_i \) by the rule

\[
\begin{cases}
\sum_{i=1}^{1} a_i = a_1, \\
\sum_{i=1}^{n+1} a_i = (\sum_{i=1}^{n} a_i) + a_{n+1}
\end{cases}
\]

and then use the axiom of induction to prove that this assigns a unique value to \(\sum_{i=1}^{n} a_i \).
Assuming this, use the axiom of induction to prove that \(2 \sum_{i=1}^{n} i = n^2 + n \). Here \(2 = 1 + 1 \).