MAPS BETWEEN LOCAL PICARD GROUPS

JÁNOS KOLLÁR

Let X be a scheme and $x \in X$ a point. The *local Picard group* of X at x, denoted by $\operatorname{Pic}^{\operatorname{loc}}(x, X)$, is the Picard group of the *punctured neighborhood* $\operatorname{Spec}_X \mathcal{O}_{x,X} \setminus \{x\}$. For an isolated, normal singularity (x, X) the local Picard group is isomorphic to the divisor class group of the local ring $\mathcal{O}_{x,X}$.

Our aim is to study the pull-back map on the local Picard group in two situations.

Question 1 (Normalization). Let $\pi : \overline{X} \to X$ denote the normalization and $\overline{x}_i \in \overline{X}$ the reduced preimages of x. What is the kernel of the pull-back map

$$\pi^* : \operatorname{Pic}^{\operatorname{loc}}(x, X) \to \sum_i \operatorname{Pic}^{\operatorname{loc}}(\bar{x}_i, \bar{X})?$$

Question 2 (Restriction to a divisor). Let $x \in D \subset X$ be an effective Cartier divisor. What is the kernel of the restriction map

$$r_D^X : \operatorname{Pic}^{\operatorname{loc}}(x, X) \to \operatorname{Pic}^{\operatorname{loc}}(x, D)?$$