K-theoretic computations in enumerative geometry

Shuai Wang

Oct 2016

1 Introduction

Recently, I’m reading Prof. Okounkov’s ‘Lectures on K-theoretic computations in enumerative geometry, so this notes is just a reading notes....

2 The localization theorem

Let X be a smooth projective scheme with an smooth action of the smooth diagonal group D. We want to consider the Grothendieck group $K_D(X)$ of D-linearized coherent sheaf on X.

2.1 Basic notations and constructions

First recall the following notations and constructions

- $K_D(X)$
 the Grothendieck group of the category of D-equivariant locally free sheaves on X.
- $K^D(X)$
 the Grothendieck group of the category of D-equivariant coherent sheaves on X.
- $K_D(X^D)$
 the Grothendieck group of D-equivariant locally free sheaves on the fixed locus X^D.
- $K^D(X^D)$
 the Grothendieck group of category of D-equivariant locally free sheaves on the fixed locus X^D.
- $\Delta, X(D)$:
 character group of D
- $R(D) = \mathbb{Z}[\Delta]$.
 \mathbb{Z}-group algebra associated to the character group $\Delta = X(T)$, or simply the representation ring of D.
 It’s an integral domain. For $\chi \in \Delta$, we usually use e^χ to denote the corresponding element in $R(D)$. And let $S \subset R(D)$ be the multiplicative subset generated by $(1 - e^\chi)$ for all non-trivial χ, then we know $0 \notin S$.
- $cl(\mathcal{F}), [\mathcal{F}]$
 The class represented by \mathcal{F} in $K_D(X)$.
• $K_D(Spec(k)) \cong R(D)$.
 From this point of view $K_D(Spec(k))$ contains more information than the ordinary $K(Spec(k)) \cong \mathbb{Z}$.

• pull-back $f^!$.
 For f a D-equivariant morphism, $f^! = K_D(f)$, which is induced by the ordinary pull-back operation of sheaves.

• push-forward $f_!$.
 For f a D-equivariant morphism, $f_! = K_D(f)$, which is induced by the ordinary push-forward operation of sheaves, or we can say, it’s induced by the direct image functor f_*.

• ch, tr
 Let E be a k-linear representation of D, then
 $$tr(E) := \sum (dim_k E_{\chi}) e^{\chi} \in R(D).$$
 It’s just the decomposition of a representation into the direct sum of 1-dimensional irreducibles.

• tr_X.
 If D acts trivially on X, then $\mathcal{F} = \oplus \mathcal{F}_\chi$. We forget the D-equivariant structure of \mathcal{F}_χ, and just view it as an element in $K(X)$, then we can define a map
 $$tr_X : K_D(X) \to K(X) \otimes \mathbb{Z} R(D)$$
 $$E \to \sum \mathcal{F}_\chi \otimes e^{\chi}$$

• tr_x or tr?
 If x is a (closed) fixed point of the D-action on X, which means
 $$tr_x : K_D(x) \to K(x) \otimes \mathbb{Z} R(D)$$
is the isomorphism we just defined, however, it’s just the map tr, since a class in $K(X)$ is represented by its dimension.
 $$tr : K_D(x) \to R(D); E \to \sum_{\chi} m_\chi E_{\chi}.$$

• λ-operation.
 $$\lambda^i : K_D(X) \to K_D(X); [\mathcal{F}] \mapsto [\lambda^i \mathcal{F}].$$
 $$\lambda^i : K_D(X) \to 1 + t K_D[[t]]; [\mathcal{F}] \mapsto 1 + \sum_{i=1}^{+\infty} \lambda^i [\mathcal{F}] t^i.$$
Note that λ is a group homomorphism. tr_X is an isomorphism (we already know the case when $X = Spec(k)$.)

• $A = \text{Sym}_k E$.
 The symmetric algebra associated to the representation E over k, it’s also an integral domain. It has a natural grading, which we can secretly take as $k[x_0, \ldots, x_n]$.

• $D - A$-graded modules.
 A $D - A$-graded module M is a A-graded module with a D action on each graded piece subjected to
 $$d(am) = d(a)d(m); d \in D, a \in A, m \in M.$$
The morphisms in the category of $D - A$-graded modules are those graded of degree 0, A-linear, D-linear.
• twisted $D - A$-graded modules.
 Given a graded $D - A$-graded module, the twisted $D - A$-graded module M_χ is isomorphic to M as A-modules, but with a twisted action by D:
 \[
 d \cdot m := \chi(d)dm.
 \]
 Note that we have
 \[
 \text{Hom}_{D-A-graded}(A_\chi(-n), N) \cong (N_n)_\chi.
 \]
 $(N_n)_\chi$ means the submodule of N_n with the D-action of weight χ.

• $H^i(X, \mathcal{F})$ is a representation of D.
 Consider Čech cohomology and a theorem by Hideyasu Sumihiro which says that we can find a D-invariant affine open cover of X. There’s another way to define it, namely we have
 \[
 \mathcal{F} \xrightarrow{\sigma^*} d^* \mathcal{F} \longrightarrow \mathcal{F}
 \]
 where the second map is given by the linearization of \mathcal{F}, thus we have
 \[
 H^i(X, \mathcal{F}) \rightarrow H^i(X, \sigma^* \mathcal{F}) \rightarrow H^i(X, \mathcal{F}).
 \]

• The Lefschetz trace $\chi_D(X, \mathcal{F})$.
 Since the functor
 \[
 \mathcal{F} \rightarrow \sum (-1)^i \text{tr} H^i(X, \mathcal{F})
 \]
 is additive, so it induces the Lefschetz trace
 \[
 \chi_D(X, \mathcal{F}) : K_D(X) \rightarrow R(D).
 \]

• $Ch(\mathcal{F})$

• $Todd(\mathcal{F})$

• $Todd(X) := Todd(T_X)$.
 The Todd class of the tangent sheaf of X.

• ct_D is the composition
 \[
 K_D(X) \xrightarrow{\text{tr}_X} K(X) \otimes_{\mathbb{Z}} R(D) \xrightarrow{Ch \otimes id_{R(D)}} A(X) \otimes_{\mathbb{Z}} \mathbb{Q} \otimes_{\mathbb{Z}} R(D)
 \]

• $Todd_D$ is the composition
 \[
 K(X) \otimes_{\mathbb{Z}} R(D) \xrightarrow{Todd \otimes id_{R(D)}} A(X) \otimes_{\mathbb{Z}} \mathbb{Q} \otimes_{\mathbb{Z}} R(D)
 \]

2.2 $K_D(X)$ and $K^D(X)$; $i^!$ and $i_!$

Proposition 2.1 (coherent sheaves v.s vector bundles, $K_D(X) = K^D(X)$). The natural of $K_D(X)$ into the Grothendick group of the category of D-linearized coherent sheaves on X is an isomorphism.
Remark (tensor product is not the multiplication in $K^D(X)$). Since tensor product is only right exact, this is not the multiplication in $K^D(X)$, i.e. if we have a short exact sequence of coherent sheaves

$$0 \to \mathcal{E}_1 \to \mathcal{E}_2 \to \mathcal{E}_3 \to 0.$$

Then in $K^D(X)$, we have $[\mathcal{E}_2] = [\mathcal{E}_1] + [\mathcal{E}_3]$; however, if \mathcal{F}, a coherent sheaf, but not flat, then $[\mathcal{E}_2 \otimes \mathcal{F}] \neq [(\mathcal{E}_1 \oplus \mathcal{E}) \otimes \mathcal{F}]$. On the other hand, by the theorem above, we know $K^D(X) = K^D(X)$ for a smooth projective scheme X, tensor product is the multiplication in $K_D(X)$, so we know $K^D(X)$ does have a ring structure. That is by Hilbert syzygy theorem, we can always find a free resolution

$$0 \to \mathcal{V}_{n+1} \to \cdots \to \mathcal{V}_0 \to \mathcal{E} \to 0$$

then we also have

$$0 \to \mathcal{V}_{n+1} \otimes \mathcal{F} \to \cdots \to \mathcal{V}_0 \otimes \mathcal{F} \to \mathcal{E} \otimes \mathcal{F} \to 0.$$

By the definition of $K^D(X)$, we know

$$[\mathcal{E}][\mathcal{F}] = \sum (-1)^i [\mathcal{V}_i][\mathcal{F}].$$

Then by some general fact from homological algebra, we also get

$$[\mathcal{E}][\mathcal{F}] = \sum (-1)^i \text{Tor}_i^{O_X}(\mathcal{E}, \mathcal{F}).$$

Example 2.2 (transverse intersection). Let Y_1, Y_2 be two closed subschemes of X in "general position", then we have

$$[O_{Y_1}][O_{Y_2}] = [O_{Y_1 \cap Y_2}].$$

Let $i : Y \to X$ be a D-equivariant closed immersion of smooth projective schemes with D-action.

Proposition 2.3 (the projection formula, push-pull). For any $x \in K_D(X)$, $y \in K_D(y)$, we have

$$i_!(i^!x \otimes y) = x \otimes i_!y$$

Proposition 2.4 (the self-intersection formula).

$$i_!i^!y = y_{\lambda - 1}N_{Y/X}^\vee.$$

Proposition 2.5 (the Cartesian formula). Let

$$
\begin{array}{ccc}
T & \xrightarrow{j'} & Y \\
\downarrow{i'} & & \downarrow{i} \\
Z & \xrightarrow{j} & X
\end{array}
$$

be a Cartesian square of D-equivariant immersions between smooth projective schemes with D-action. Then there exists $\gamma_T \in K_D(T)$, such that for $\forall y \in K_D(y)$

$$i_!(\gamma_T j^!y) = j^!(i_!y).$$

2.3 basic properties

Proposition 2.6 (Hideyasu Sumihiro). A normal variety over an algebraically closed field with an action of a torus is covered by invariant affine open subsets.

Remark (normality is necessary). Consider $\mathbb{P}^1/\{0, \infty\}$, or the projective nodal curve.
Remark (Torus action is necessary). Białynicki-Birula and Swiecicka’s paper "On complete orbit spaces of $SL(2)$ actions II".

Proposition 2.7 (X^D is smooth).

Proposition 2.8 (Yuri, Manin). Let Z be a smooth projective variety(?), $z \in Z$ a closed point, $j_z : z \to Z$ the inclusion, then we have
\[K(Z) = \mathbb{Z} \oplus \ker(j_z^*) \]
and $\ker(J^*)$ is nilpotent. If Z is an irreducible component of X^D, consider the isomorphism tr_Z, we actually have
\[K(Z) = (\mathbb{Z} \oplus \ker(j^*)) \otimes \mathbb{Z} R(D) \cong R(D) \oplus \ker(j^*) \]
and $\ker(j^*)$ is nilpotent. The last identity is due to the fact that $K(Z)$ is a natural $R(D)$-algebra, $\ker(j^*) \otimes \mathbb{Z} R(D) = \ker(j^*)$.

Proof. See Manin, "Lectures on K-functors in algebraic geometry."

2.4 the localization theorem

Theorem 2.9 (the localization theorem).

The inclusion $i : X^D \to X$ induces an $R(D)$-linear map
\[i^! : K_D(X) \to K_D(X^D) \]
which is an isomorphism after localization w.r.t S, its inverse is given by
\[S^{-1}K_D(X^D) \to S^{-1}K_D(X) \]
\[y \mapsto S^{-1}i!(y(\lambda^{-1}N^\vee_{X^D/X})^{-1}). \]

Before proving this theorem, we might ask

• why $\lambda^{-1}N^\vee$ is invertible in $S^{-1}K_D(X^D)$, in other words, why $\lambda^{-1}N^\vee \in S$?

2.5 compute $\chi_D(X, \mathcal{F})$ via $\chi(X^D, i^!*\mathcal{F})$

Proposition 2.10 (just like $H^i(Y, \mathcal{F}) = H^i(X, i_*\mathcal{F})$). Let $i : Y \to X$ be a D-equivariant closed immersion, then
\[\chi_D(Y, y) = \chi_D(X, i!(y)). \]

Remark (when $H^i(Y, \mathcal{F}) = H^i(X, i_*\mathcal{F})$)?

Proposition 2.11 (compute $\chi_D(X^D, -)$). If D acts trivially on X, then the following diagram commutes:

The first proposition tells us if a coherent sheaf is the push-forward of some coherent sheaf on Y, then their characters are the same. The second proposition tells us if you want to compute the character on the fixed locus, you can just use the ordinary, unlinearized χ. And the localization theorem tells us proposition is always true, if we consider the localization w.r.t S, that is

Proposition 2.12 (local-global). Let $i : X^D \to X$, $\forall x \in X$
\[X^D(X, x) = S^{-1}\chi_D(X^D, i^!(X) \bullet (\lambda^{-1}N^\vee)^{-1}) \text{in } S^{-1}R(D). \]
Proof. By the localization theorem, after taking the localization, we have

\[x = i_!(i^!(x) \cdot (\lambda^{-1}N^\vee)^{-1}) \]

then apply the first proposition above, we get

\[\chi_D(X, x) = S^{-1}\chi_D(X^D, i^!(x) \cdot (\lambda^{-1}N^\vee)^{-1}) \]

Example 2.13 (\(\chi(X, \lambda^{-1}\Omega_X) = \chi(X^T, \lambda^{-1}\Omega_T)\)). Consider the cotangent sequence

\[0 \to N^\vee_{X^D/X} \to i^*\Omega_X \to \Omega_{X^D} \to 0. \]

Since \(\lambda\)-operation is a group homomorphism, we get

\[\lambda^{-1}[i^*\Omega_X] = \lambda^{-1}N^\vee \cdot \lambda^{-1}[\Omega_{X^D}] \]

Note that

- \(\lambda^{-1}[i^*\Omega_X] = i^![\lambda^{-1}\Omega_X]\) by definition. In general, we don’t have this kind of identity, but since \(X\) is smooth, \(\Omega_X\) is a vector bundle, thus flat, so is its restriction on \(X^D\), thus \(i^![\Omega_X]\) contains only the first term, that is \(i^*\Omega_X = f^{-1}\Omega_X \otimes f^{-1}\mathcal{O}_Y \mathcal{O}_{X^D}\).

- \(\lambda^{-1}\Omega_{X^D} = i^![\lambda^{-1}\Omega_X] \cdot (\lambda^{-1}N^\vee)^{-1}\)

Thus by the local-global proposition above, we get

\[\chi_D(X, \lambda^{-1}\Omega_X) = \chi_D(X^D, \lambda^{-1}\Omega_{X^D}) \text{ in } S^{-1}R(D). \]

Specially, if \(D = T\) is an algebraic torus, then the identity holds in \(R(D)\). So no need to worry about the denominator, let \(e^x = 1\), for all \(\chi\), then we get

\[\chi(X, \lambda^{-1}\Omega_X) = \chi(X^D, \lambda^{-1}\Omega_{X^D}). \]

Remark (what’s the difference between \(D\) and an algebraic torus?).

2.6 Lefschetz fixed point theorem

Theorem 2.14 (Lefschetz fixed-point theorem, isolated, finite). If \(X^D\) is isolated and finite, for a \(D\)-equivariant coherent sheaf \(\mathcal{F}\) on \(X\), we have

\[\sum_i (-1)^i \text{tr}^i(X, \mathcal{F}) = \sum_{z \in \mathcal{D}} \frac{\text{tr}\mathcal{F}_z}{\sum_i (-1)^i \text{tr} \wedge T_zX^\vee}. \]

Proof. Because

- \(i_!^!\mathcal{F} = [\mathcal{F}_z].\)
- \(N_{z/X} = T_{z/X}.\)

Remark \((i^!\mathcal{F} = i^*\mathcal{F} = \mathcal{F}_z?)\). This is for sure true if \(\mathcal{F}\) is a vector bundle, here because \(z\) is an isolated point, \(K_D(z) \cong \mathbb{Z}\), so it’s true in general.

Example 2.15 (Weyl character formula).
Theorem 2.16 (the cohomological formula).

$$\chi_D(X, F) = \int_{X^D} \frac{ct_D(i^* F) Todd_D(X^D)}{ct_D(\lambda_1 N^X_{X^D/\chi})}.$$

Theorem 2.17 (the Woods-Hole formula). Let $\sigma \in D(k)$. The evaluation map

$$ev_\sigma : R(D) \to k; \chi \mapsto \chi(\sigma)$$

gives us the ordinary trace, i.e $ev_\sigma(Tr(E)) = Tr(\sigma, E)$, the trace of the σ on E. If σ is a dense(regualr) element(i.e $\chi(\sigma) \neq 1$ for all non-trivial character χ), then ev_σ can be extended to be a map

$$ev_\sigma : S^{-1}R(D) \to k.$$

We have

$$\sum_i (-1)^i Tr(\sigma, H^i(X, F)) = \sum_{z \in X^D} \frac{Tr(\sigma, F_z)}{Det(1 - d_z \sigma)}$$

where d_z is the differential at z.

Theorem 2.18 (Specialization to the Witt ring). Assume that char(k) = $p \neq 0$. For an element $\sigma \in D(k)$, the composite of the evaluation map ev_σ and the Teichmuller lifting $w : k^* \to Witt(k)$ gives a map

$$b_\sigma : R(D) \to Witt(k)$$

such that we have $b_\sigma(Tr(E)) = BTr(\sigma, E)$, the Brauer trace for the operation of σ on E. If we assume further that D is finite cyclic with generator $d \in D(k)$, d is regular(dense), then b_σ can be extended to be

$$R(D) \to S^{-1}R(D) \to Witt(k)$$

then we can get a formula of P.Donovan(Thm5.3, The Lefschetz-Riemann-Roch formula).

2.7 Some comparisons

Example 2.19 ($K(X)$ and $Pic(X)$).

Example 2.20 (Lefschetz fixed-point theorem and Lefschetz hyperplane theorem).

Example 2.21 ($K(X)$ and $CH(X) = A(X)$).

3 Equivariant K-theory of Grassmannians

4 Equivariant K-theory of Flag varieties

5 K-theoretic proof of the Weyl Character formula

6 Comparisons between intersection theory and K-theory

7 Exercises in Andrei’s notes, Chapter 2

Example 7.1 (Ex2.1.5).

$$\sum(-s)^k \chi_V^k(t) = \Pi(1 - st^n) = exp(-\frac{1}{n}s^n \chi_V(t^n)).$$

Choose a basis $\{e_1, \ldots, e_k\}$ for the weight decomposition of V, $\{e_i_1 \wedge \ldots e_i_r | 1 \leq i_1 < i_2 \ldots < i_r \leq r\}$ is a basis for the weight decomposition of $\wedge^r V$, and the second identity comes from $ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \ldots$.

7
Example 7.2 (Ex2.1.7, Koszul complex). Construct an \(GL(V) \)-equivariant exact sequence
\[
\cdots \rightarrow \wedge^2 V \otimes S^* V \rightarrow \wedge^1 V \otimes S^* V \rightarrow S^* V \rightarrow \mathbb{C} \rightarrow 0.
\]

Example 7.3 (Ex2.1.9). Consider \(V \cong \text{Spec}(\mathbb{C}[x_1, \ldots, x_n]) \) as an algebraic variety on which \(GL(V) \) acts. Construct a \(GL(V) \)-equivariant resolution of \(O_0 \), the structure sheaf of \(0 \in V \) by vector bundles on \(V \).
\[
0 \rightarrow O_{\mathbb{C}^n}(\frac{\langle n \rangle}{n!}) \rightarrow \cdots \rightarrow O_{\mathbb{C}^n}(\frac{\langle x_1, \ldots, x_n \rangle}{n!}) \rightarrow O_{\mathbb{C}^n} \rightarrow O_0 \rightarrow 0.
\]

But this is the same as given by the Koszul complex. We need something else.

Example 7.4 (Ex 2.1.12, Ex 2.1.14 \(\mu = 0 \) is not a weight of \(V \)).
\[
S^* V = (-1)^{rk V} \det V^\vee \otimes S^* V^\vee.
\]

Since \(\mu = 0 \) is not a weight of \(V \), we have
\[
\sum_{k \geq 0} \chi_{S^k V}(t) = \frac{1}{1 - t^\mu}
\]
\[
\sum_{k \geq 0} \chi_{S^k V^\vee}(t) = \frac{1}{1 - t^{-\mu}}
\]
\[
\chi_{\det V}(t) = t^{-\sum \mu}.
\]

Then \(S^* V = (-1)^{rk V} \det V^\vee \otimes S^* V^\vee \) is nothing but \(\frac{1}{1 - t^{-1}} = (-1)^{\frac{1}{1 - t}} \). With this description, we naturally get
\[
S^* (V_1 \oplus V_2) = S^* V_1 \oplus S^* V_2,
\]
specialy
\[
S^* (-V) = \wedge^* V = \sum_i (-1)^i \wedge^i V.
\]

Example 7.5 (Ex2.1.17, 2.1.18, the map \(S^* \)).
\[
K'_T \rightarrow K_{T, \text{localized}}
\]
\[
S^*(a - b) = \frac{1 - b}{1 - a}, S^* a - b = \Pi_{n \geq 0} \frac{1 - q^n b}{1 - q^n a}
\]
\[
S^* \frac{a}{(1 - q)^{k+1}} = \Pi_{n \geq 0} (1 - q^n a)^{-\binom{n+k}{n}}
\]

Here, I think \(a, b \) represent some virtual 1-dimensional \(T \)-representations with non-trivial character. Then
\[
S^* a = \frac{1}{1 - a}, S^* b = 1 - b.
\]

Together with the taylor expansion of \(\frac{1}{1 - q} \) and \(\frac{1}{(1 - q)^{k+1}} \), we get the formula above (note that \(S^* \) turns direct sums into tensor products).

Example 7.6 (inverse of \(S^* \)). Prove that the inverse to \(S^* \) is given by
\[
\chi_V(t) = \sum_{n > 0} \frac{\mu(n)}{n} \ln \chi_{S^* V}(t^n)
\]
where μ is the Mobius function

$$
\mu(n) = \begin{cases}
(-1)^{\text{#prime factors, } n \text{ square free}} \\
0, \text{ otherwise.}
\end{cases} \quad (1)
$$

Let’s prove a special case first, the 1-dimensional representation $\chi_V(t) = t$. We need to prove

$$
t = \sum_{n \geq 1} \frac{\mu(n)}{n} \ln\left(\frac{1}{1-t^n} \right)
$$

plug in $t = 0$, they are the same. Then we compute the derivatives,

$$
1 = \sum_{n \geq 1} \frac{\mu(n)t^{n-1}}{1-t^n}.
$$

In the RHS, the coefficient of $t^k, k \geq 1$ is given by

$$
\sum_{(n-1)+rn=k} \mu(n) = \sum_{n|(k+1)} \mu(n) = 0.
$$

The last equality follows from the prime factorization of $k+1$ and the definition of $\mu(n)$. Actually, this does give us a proof. By changes of the variable, we have

$$
t^\mu = \sum_{n \geq 1} \frac{\mu(n)}{n} \ln\left(\frac{1}{1-t^{n\mu_i}} \right)
$$

thus

$$
\chi_V(t) = \sum_i t^\mu_i = \sum_i \sum_{n \geq 1} \frac{\mu(n)}{n} \ln\left(\frac{1}{1-t^{n\mu_i}} \right)
= \sum_{n \geq 1} \frac{\mu(n)}{n} \ln(\Pi_i \frac{1}{1-t^{n\mu_i}}) = \sum_{n>0} \frac{\mu(n)}{n} \ln \chi_{S^*V}(t^n).
$$

Example 7.7 (Bialynicki-Birula decomposition, page 23). We use this method (instead of Morse theory), to compute the Poincaré polynomial of several Hilbert schemes of points.

Example 7.8 (Ex 2.2.3, $K_G^X(X) \nleq K_G^X(X)$). Consider $X = \text{Spec}(\mathbb{C}[x_1,x_2]/(x_1x_2)) \subset \mathbb{C}^2$ with the natural action of the maximal torus $T = \begin{pmatrix} t_1 & 0 \\ 0 & t_2 \end{pmatrix} \subset GL(2)$. Let $\mathcal{F} = \mathcal{O}_0$ be the structure sheaf of the origin $0 \in X$.

We want to compute the minimal T-equivariant resolution

$$
\cdots \to \mathcal{R}^{-2} \xrightarrow{d_{-2}} \mathcal{R}^{-1} \xrightarrow{d_{-1}} \mathcal{R}^0 \xrightarrow{d} \mathcal{F} \to 0
$$

of \mathcal{F} by sheaves (not necessarily vector bundles!) of the form

$$
\mathcal{R}^i = \mathcal{O}_X \otimes R^i
$$

where R^i is a finite dimensional T-module. To do this let

$$
\mathcal{R}^0 = \mathcal{O}_X, H^0(\mathcal{O}_X) = \text{span}\{1, x_1^k, x_2^k | k \geq 1\}
$$

9
\[R^{-1} = \mathcal{O}_X \otimes (\mathbb{C} e_{-1} \oplus \mathbb{C} f_{-1}), \text{wt}(e_{-1}) = t_1, \text{wt}(f_{-1}) = t_2 \]
\[d_{-1} : t^n_{i} \otimes e_{-1} \mapsto t^n_{i} t_1, t^n_{i} \otimes f_{-1} \mapsto t^n_{i} t_2. \]

Similarly, we define
\[R^{-k} = \mathcal{O}_X \otimes (\mathbb{C} e_{-k} \oplus \mathbb{C} f_{-k}), \text{wt}(e_{-k}) = t_2 t_{1}^{k-1}, \text{wt}(f_{-k}) = t_1 t_{2}^{k-1} \]
\[d_{-k} : t^n_{i} \otimes e_{-k} \mapsto (t^n_{i} t_1) \otimes f_{-(k-1)}, t^n_{i} \otimes f_{-k} \mapsto (t_2 t^n_{i}) \otimes e_{-(k-1)}. \]

It’s straightforward to check that
\[
\ker(d_{-k}) = \text{span}\{t^n_{i} \otimes e_{-k}, t^n_{i} \otimes f_{-k} \mid n \geq 1\} = \text{im}(d_{-(k+1)}).
\]

Now we know
\[R^{-k} \otimes \mathcal{F} = (\mathcal{O}_X \otimes \mathcal{F}) \otimes R^i, \chi_{R_{i}} = t_2 t_{1}^{k-1} + t_1 t_{2}^{k-1}. \]
\[\text{Tor}_{i}(\mathcal{F}, \mathcal{F}) := H^{-i}(R^\bullet \otimes \mathcal{F}) = R^i. \]

The last equality is because of Schur’s lemma and the fact that different R^i’s have different weights. This already tells us \mathcal{F} is not in the image of $K^*_T(X) \rightarrow K_T(X)$. We also know
\[
\sum_i (-1)^i \frac{\chi(\mathcal{F})^2}{\chi(\mathcal{O}_X)} = \frac{1}{1+t_1^{-1}} + \frac{1}{1+t_2^{-1}} - 1 = \frac{(1-t_1^{-1})(1-t_2^{-1})}{1-t_1^{-1}t_2^{-1}}.
\]

Remark (\(\sum_i (-1)^i \chi_{\text{Tor}^i(\mathcal{F}, \mathcal{F})} = \frac{\chi(\mathcal{F})^2}{\chi(\mathcal{O}_X)}\)). In the derived category of coherent sheaves, we have
\[\mathcal{F} \otimes L \mathcal{G} \sim \mathcal{F}^\bullet \otimes \mathcal{G}^\bullet \]

If we assume the free resolutions are T-equivariant and of the form $\mathcal{O}_X \otimes F_i, \mathcal{O}_X \otimes G_i$, for some T-modules F_i and G_i. We get
\[
\chi(\mathcal{F} \otimes L \mathcal{G}) = \sum_i (-1)^i \chi_{\text{Tor}^i(\mathcal{F}, \mathcal{G})} = \sum_i (-1)^i \chi(\oplus_{m+n=i}(\mathcal{O}_X \otimes F_m) \otimes (\mathcal{O}_X \otimes G_n))
\]
\[
= \frac{1}{\chi(\mathcal{O}_X)} \sum_i (-1)^i (\sum_{m+n=i} \chi(\mathcal{O}_X \otimes F_m) \chi(\mathcal{O}_X \otimes G_n))
\]
\[
= \frac{\chi(\mathcal{F})\chi(\mathcal{G})}{\chi(\mathcal{O}_X)},
\]

thus in this situation, we have
\[
\chi(\mathcal{F} \otimes L \mathcal{G}) = \frac{\chi(\mathcal{F})\chi(\mathcal{G})}{\chi(\mathcal{O}_X)},
\]
what we want in the example is above is just a special case.

Remark (every coherent sheaf on a smooth variety is perfect).

Example 7.9 (Ex 2.2.6). Generalize the last identity above to the case
\[
X = \text{Spec}(\mathbb{C}[x_1, \ldots, x_d]/I)
\]
\[\mathcal{F} = \mathbb{C}[x_1, \ldots, x_n]/I' \]
where $I \subset I'$ are monomial ideals.
Example 7.10 (Ex 2.2.10, 2.3.14, compute $\chi(\mathbb{P}^n, \mathcal{O}(k))$ by localization). Take $X = \mathbb{P}^n = \mathbb{P}(\mathbb{C}^{n+1})$ and $GL(n+1)$ naturally acts on X. \{D_+(x_i)\}_{i=1}^{n+1}$ is a T-invariant Cech covering of \mathbb{P}^n. We denote $\mathcal{O}(k)$ by \mathcal{F}.

- $\chi(\mathbb{P}^n, \mathcal{O}(k)) = \begin{cases} \sum_{i_1+\cdots+i_{n+1}=k} t_1^{-i_1} t_2^{-i_2} \cdots t_{n+1}^{-i_{n+1}} & k \geq 0 \\ 0 & -n-1 < k < 0 \\ (t_1 t_2 \cdots t_n) \sum_{i_1+\cdots+i_{n+1}=-k-n-1} t_1^{i_1} t_2^{i_2} \cdots t_{n+1}^{i_{n+1}} & k \leq -n-1 \end{cases}$ \hspace{1cm} (2)

- **fixed points**

 $p_i = [0, \ldots, 0, x_i = 1, 0, \ldots, 0]$

 $wt(\mathcal{F}_{p_i}) = t_i^{-k}$

- **weight of the stalk**

 $wt(\mathcal{O}(p)) = \sum_{j \neq i} \frac{t_j}{t_i}$

 $(\lambda_1 N_{p_i/\mathbb{P}^n})^{-1} = \prod_{j \neq i} \frac{1}{1 - \frac{t_i}{t_j}}$

- **the localization theorem tells us that**

 $\chi(\mathbb{P}^n, \mathcal{O}(k)) = \frac{n+1}{\prod_{j \neq i} (1 - \frac{t_i}{t_j})} \sum_{i=1}^{n+1} \frac{t_i^{-k}}{(1 - \frac{t_i}{t_j})}$.

- **to convince yourself this is is the correct answer, check for example**

 $\chi(\mathbb{P}^1, \mathcal{O}(k)) = \frac{t_1^{-k}}{1 - \frac{t_1}{t_2}} + \frac{t_2^{-k}}{1 - \frac{t_2}{t_1}}$

 $= \frac{t_2^{-k} t_1 - t_1^{-k} t_2}{t_1 - t_2} = \frac{t_2^{-k} t_1 (1 - \frac{t_2}{t_1})^{k+1}}{t_1 - t_2}$

 $= \frac{t_2^{-k} (t_1 - t_2)(1 + \frac{t_2}{t_1} + \cdots + \frac{(t_2)^k}{t_1^k})}{t_1 - t_2}$

 $= \sum_{i+j=k} t_1^{-i} t_2^{-j}$.

 We note that this only checks the $k \geq 0$ cases, because we need the factorization of $1 - x^{k+1}$, but it’s not a problem at all, use the factorization of $x^{-k} - y^{-k}$ instead. This also gives us a way to check the two expression of $\chi(\mathbb{P}^n, \mathcal{O}(k))$, we leave it as an exercise.

Remark (Euler sequence, tangent sequence are not T-equivariant). We know $N_{p_i/\mathbb{P}^n} \cong \mathcal{O}(1)^n$, but we can not use this isomorphism to compute the character of the normal bundle, because it’s not a T-equivariant isomorphism. To be more precise, as vector bundles they’re the same, but the T-action on the normal bundle in this exercise doesn’t agree with the natural T-action on $\mathcal{O}(1)^n$.

Remark ($S^1 \mathbb{C}^n$ is irreducible). We can use the computation of the character to prove that $S^1 \mathbb{C}^n$ is irreducible as a representation of $GL(n)$.

Example 7.11 (Ex 2.3.15, 2.3.16 $\chi(G/B, \mathcal{L}_\lambda)$).
Example 7.12 ($\chi(X_{a,b}, O(k))$, character of sheaves on a weighted projective space). For $a, b > 0$, consider the weighted projective line

$$X_{a,b} := \mathbb{C}^2 \setminus \{0\}/\left(\begin{array}{cc} z^a & 0 \\ 0 & z^b \end{array}\right), \ z \in \mathbb{C}^\times.$$

Then $D_+(x), D_+(y)$ are two orbifold charts. Like any \mathbb{C}^\times-quotient, it inherits an orbifold line bundle $O(k)$ whose sections are functions ϕ on $\mathbb{C}^2 \setminus \{0\}$ such that $\phi(z \cdot x) = z^k \phi(x)$. These sections are just the vector space spanned by monomials of the form $x^i y^j, ai + bj = k$.

Then we easily get the character formula

$$\sum_{k \geq 0} \chi(X_{a,b}, O(k)) s^k = \frac{1}{(1-t_1^{-1}s^a)(1-t_2^{-1}s^b)}.$$

We can also get this result by applying the localization theorem (for orbifolds), quite similar like the \mathbb{P}^1 case, we have

$$\chi(X_{a,b}, O(k)) = \frac{t_1^{-k}}{1-t_1^{-1}} + \frac{t_2^{-k}}{1-t_2^{-1}}.$$

Example 7.13 (Ex 2.2.15 Projection formula).

$$f_*(\mathcal{F} \otimes f^* \mathcal{E}) \cong f_*(\mathcal{F}) \otimes \mathcal{E}.$$

Example 7.14 (fractional power of the canonical bundle). Let X be a proper nonsingular variety with a nontrivial action of $T \cong \mathbb{C}^\times$. Assume that a fractional power $\mathcal{K}^p, 0 < p < 1$ of the canonical bundle \mathcal{K}_X exists in $\text{Pic}(X)$. Replacing T by a finite cover, we can make it act on \mathcal{K}^p. Show that $\chi(X, \mathcal{K}^p) = 0$.

What does this say about projective spaces? Concretely, which are the bundles $\mathcal{K}^p, 0 < p < 1$, for $X = \mathbb{P}^n$ and what do we know about their cohomology?

Serre duality, $\mathcal{K}^\vee = \mathcal{O}_{\mathbb{P}^n}(\frac{-s(n+1)}{t})$, if we assume $(s, t) = 1$, we then need $t|s(n+1)$.

Example 7.15 ($\chi(X, \lambda^{-1}\Omega_X) = \chi(X^T, \lambda^{-1}\Omega_T)$). Consider the cotangent sequence

$$0 \to N_{X^D/X} \to i^*\Omega_X \to \Omega_{X^D} \to 0.$$

Since λ-operation is a group homomorphism, we get

$$\lambda^{-1}[i^*\Omega_X] = \lambda^{-1} N^V \cdot \lambda^{-1} [\Omega_{X^D}]$$

Note that

- $\lambda^{-1}[i^*\Omega_X] = i^*[\lambda^{-1}\Omega_X]$ by definition. In general, we don’t have this kind of identity, but since X is smooth, Ω_X is a vector bundle, thus flat, so is its restriction on X^D, thus $i^*\Omega_X$ contains only the first term, that is $i^*\Omega_X = f^{-1}\Omega_X \otimes f^{-1}O_Y\, O_{X^D}$.
\[\lambda \Omega X \mathcal{D} = \lambda! \left[\chi_{\mathcal{D}}(X, \lambda - 1 \Omega X) \right] \cdot (\lambda - 1 N^\vee)^{-1} \]

Thus by the local-global proposition above, we get

\[\chi_{\mathcal{D}}(X, \lambda - 1 \Omega X) = \chi_{\mathcal{D}}(X^D, \lambda - 1 \Omega X^D) \text{ in } S^{-1}R(D). \]

Specially, if \(D = T \) is an algebraic torus, then the identity golds in \(R(D) \). So no need to worry about the denominator, let \(e^\chi = 1 \), for all \(\chi \), then we get

\[\chi(X, \lambda - 1 \Omega X) = \chi(X^D, \lambda - 1 \Omega X^D). \]

Example 7.16 (Ex 2.4.2, localization formula for \(\chi(X, \lambda - 1 \Omega X) \)). Let \(X \) be proper and smooth with an action of a connected reductive group \(G \). Write a localization formula for the torus action of \(T \subset G \) on

\[\sum_p (-z)^p \chi(X, \Omega^p) \]

and conclude that every term in this sum is a trivial \(G \)-module. Without losing of generality, we may assume \(X^T \) is an irreducible subvariety (otherwise, the localization formula is just the summation over all the components, which makes no essential difference). From the example above, we know \(\chi(X, \lambda - 1 \Omega X) = \chi(X^T, \lambda - 1 \Omega X^T) \), and this is essentially what we need, we can write down the localization theorem

\[\sum_p (-z)^p \chi(X, \Omega^p) = \chi(X, \lambda - z \Omega X) = \frac{\text{tr}(\lambda - z \Omega X | X^T)}{\text{tr}(\lambda - 1 N^\vee_{X^T / X})}. \]

Note that the torus action on \(X^T \) is just the identity action, thus the formula

\[\frac{\text{tr}(\lambda - z N^\vee_{X^T / X}) (1 - z)^{\text{dim}X^T}}{\text{tr}(\lambda - 1 N^\vee_{X^T / X})} \]

Let \(\text{tr}(N^\vee_{X^T / X}) = w_1 + \cdots + w_k \), where \(w_i \) are Laurent polynomials w.r.t \(t_1, \ldots, t_{\text{dim}T} \), then we finally have

\[\sum_p (-z)^p \chi(X, \Omega^p) = \chi(X, \lambda - z \Omega X) = \frac{(1 - z)^{\text{dim}X^T} \Pi_{i=1}^k (1 - zw_i)}{\Pi_{i=1}^k (1 - w_i)}. \]

No matter what kind of limit we take w.r.t \(t_i \), the formula above is always well-defined, this tells us that it’s actually of the form

\[\sum_p (-z)^p \chi(X, \Omega^p) = \sum_p a_p z^p, a_p \in \mathbb{Z}_{\geq 0}. \]

This tells us exactly every term \(\Omega^p \) is a trivial \(G \)-module.

Remark. compact Kahler + Hodge theory gives triviality of \(G \)-action on each

\[H^q(X, \Omega^p) \subset H^{p+q}(X, \mathbb{C}). \]

8 Chapter 3

Example 8.1 (Ex3.3.13, 3.3.14, 3.3.15, 3.3.16 Spin representations of \(SO(V) \)).