Lecture 2: The Kähler-Ricci Flow

and the \(\bar{\partial} \) operator on Vectorfields.

Intro: This paper is, in some sense, a continuation of Lecture 1. In this paper we \textbf{DO NOT} assume the uniform Boundedness of the Rm tensor. The trade off is that we lose the Kähler-Gromov Cptness Theorem, and have to assume instead that the Smallest pos. eigenvalue \(\lambda_t \) is not degenerating along the flow. \textbf{Setup}: \((X, \omega_0) \) compact, Fano.

Recall: NKRF

\[
\begin{aligned}
\frac{\partial g_{ij}}{\partial t} &= g_k j - R_{kij} = -\partial_j \partial_k \omega, \\
g_{ij} (0) &= (g_0), k_j \in \text{II} C_1 (x)
\end{aligned}
\]

Mabuchi: K-energy: Defined by it's value at a point, and it's variation \(\delta M (q) = -\frac{1}{V} \int_X \delta \varphi (R - h) w^n_x, \quad V = \int_X w^n_x = \text{II} C_1 (x) \)

Recall: In EPS. Stability + Convergence Lecture 1 J, it was shown that, if \(M > -C > -\infty \) on \(C_1 (x) \), then the function

\[
Y(t) = \int_X w^n_t \quad \text{has} \quad Y(t) \to 0 \quad \text{as} \quad t \to \infty.
\]

Moreover, we computed that
\[\dot{y}(t) = (n+1) y(t) - \int x \nabla h_1^2 R \, d^n w - \int \nabla \Delta h_1^2 \, d^n w \]

In particular \[\int_0^\infty \int x \nabla h_1^2 w \, dt = y(0) + (n+1) \int_0^\infty y(t) \, dt - \int_0^\infty \int x \Delta h_1^2 w \, dt \]

Now \(M_{ab} > -C \Rightarrow \left| \int y(t) \right| < \infty \), and Perelman's bound

for \(R \Rightarrow \) the RHS is finite, and so \[\int_0^\infty \int x \nabla h_1^2 w \, dt < \infty \]

Thus \[\| R - h \|_2 \to 0 \quad \text{as} \quad t \to \infty \]. In this paper,

Theorem 1: Assume that the Mabuchi K-energy is bounded

From below on \(\operatorname{MCG}(x) \). Let \(g_{\tilde{y}}(t) \) be any solution of the Kähler-Ricci flow, and let \(R(t) \) be the scalar curvature of \(g_{\tilde{y}}(t) \). Then

(i) \[\| R(t) - h \|_2 \to 0 \quad \text{as} \quad t \to \infty \]

(ii) \[\int_0^\infty \| R(t) - h \|_p^p \, dt < \infty \quad \forall \ p > 2 \].

Theorem 2 is an adaptation of the Result in Lecture 1
To the case when \(|R_{mm}| \) is NOT uniformly banded.

Theorem 2: Suppose we have a sol'n of the KRF, \(w(t) \) the Kähler Forms. Let \(\lambda \) be the smallest positive eigenvalue of \(-\bar{\partial} \partial \), acting on \(T^{1,0} X \).

(i) If \(\inf_{w \in \operatorname{MCG}(x)} M(w) > -\infty \)

(ii) \[\| \]
Then the $g_{k,j}$ converge exponentially fast in C^∞ to a KE.

(iii) If $g_{k,j}(t) \xrightarrow{C^\infty} g$ to a KE metric, then (A) and (S) are satisfied.

(iii) In particular, all convergence is exponential.

Before beginning the proof, we recall Perelman’s Results.

(i) if u is normalized by $\frac{1}{V} \int_X e^{-u} w^n = 1$, then:

(i) $\exists C_0$ depending only on $g_{k,j}(0)$ s.t.

$$\|u\|_{C^0} + \|\nabla u\|_{C^0} + \|R\|_{C^0} \leq C_0$$

(ii) Let $p > 0$ be given. $\exists c > 0$ depending only on $g_{k,j}(0)$ and p s.t. $\forall x \in X$, and $t \geq 0$ and $r \in (0, p]$, we have:

$$\int_{B_r(x)} w^n > c r^{2n}$$

where $B_r(x)$ is the geodesic ball of radius r centered at x, wrt $g(t)$.

The Smoothing Lemma:

Lemma 1: $\exists \delta, K > 0$ depending only on n s.t. $\forall 2 \in (0, \delta]$ and any $t_0 \geq 0$, if $\|u(t)\|_{C^0} \leq \Sigma$, then

$$\left\| \nabla u(t_{t+2}) \right\|_{C^0} + \left\| R(t_{t+2}) - n \right\|_{C^0} \leq K \Sigma.$$
Key Point: if $\|u\| \to 0$, then $\|\nabla u\|, \|\Delta u\| \to 0$.

Proof: wlog, assume $t_0 = 0$. We computed the evolution equation

For u, $\partial_t \partial_k u = \partial_t \left(g^k_j - R^k_j \right) = \partial_j \partial_k g + \partial_j \partial_k g \partial_k l$

\[\Rightarrow \partial_{\eta} \partial_k u + \partial_j \partial_k \Delta u \max_{\text{prc.}} \begin{cases} \hat{u} = \Delta u + u - b \end{cases} \]

where $b = b(t)$ is defined by $b = \frac{1}{\nu} \int_{\mathbb{R}} x e^{-u} \, dx$. (This is the necessary normalization for Perelman's results.)

In order to make this not depend on b, we define $c(t)$ by $c = c + b$, $c(0) = 0$. Now set $\hat{u}(t) = u(t) - c(t)$

we have $\|\hat{u}(t)\| \leq \varepsilon$, and $\partial_t \hat{u} = \dot{u} - \dot{c} = \Delta u + u + b - c - b$

\[\Rightarrow \hat{u} = \dot{u} + \dot{c} = \Delta u + u + b - c - b \]

\[\Rightarrow \Delta \hat{u} + \dot{u} = \Delta u + u + b - c - b \]

We compute:

\[\begin{align*}
\frac{\partial u}{\partial t} &= 2 \hat{u} \dot{u} = 2 \hat{u} \left(\Delta u + \hat{u} \right) = (\Delta \hat{u})^2 - 2 |\nabla \hat{u}|^2 \\
\frac{\partial}{\partial t} |\nabla \hat{u}|^2 &= \partial_j \partial_k g \partial_j \partial_k u + \partial_j g \partial_j g \partial_k \partial_k u - \partial_j \partial_k g \partial_k l \\
&= \partial_j \partial_k g \partial_j \partial_k u + \nabla \hat{u}^2 + \partial_j g \partial_j \hat{u} \Delta u + 1 |\nabla \hat{u}|^2 \\
&\quad - \partial_j \partial_k g \partial_j \partial_k u - \partial_j g \partial_j \partial_k \hat{u} \Delta u + 1 |\nabla \hat{u}|^2
\end{align*} \]

\[\Delta |\nabla \hat{u}|^2 \text{ Norm.}_{\text{coord.}} = \int_{\mathbb{R}^n} \partial_j \partial_k g \partial_j \partial_k u - \partial_j \partial_k g \partial_k l \]

\[= \int_{\mathbb{R}^n} \partial_j \partial_k g \partial_j \partial_k u - \partial_j \partial_k g \partial_k l \]

\[+ \partial_j \partial_k g \partial_j \partial_k u + \partial_j \partial_k g \partial_j \partial_k u \]
\[F_2 = (\Delta \hat{u}) g^{jk} \partial^k \hat{u} + \nabla \nabla \hat{u}^2 + \nabla \nabla \hat{u}^2 + \partial_j \hat{u} \partial_j g^{jk} \partial^k \hat{u} + \partial_j \hat{u} j^k \partial^k \hat{u} \]

Thus \((\frac{\partial}{\partial t} - \Delta) |\nabla \hat{u}|^2 = 2|\nabla \hat{u}|^2 - |\nabla \nabla \hat{u}|^2 - \nabla \nabla \hat{u}^2 - F_1 - F_2 \)

\[\partial_j \hat{u} j^k \partial^k \hat{u} = -2 (g^{jm} \partial_j \partial^m \hat{u} ^k + g^{jm} g^{rk} R_{mr}) \]

Thus \(-g^{jm} \partial^m \hat{u} ^k = g^{jm} g^{rk} R_{mr} \)

Thus \(F_2 = \partial_j \hat{u} \partial^j \hat{u} [-g^{jm} g^{rk} \partial^m \hat{u} ^k] + |\nabla \hat{u}|^2 = -F_1 + |\nabla \hat{u}|^2 \)

\((\frac{\partial}{\partial t} - \Delta) |\nabla \hat{u}|^2 = |\nabla \hat{u}|^2 - |\nabla \nabla \hat{u}|^2 - |\nabla \nabla \hat{u}|^2 \)

\[\frac{\partial}{\partial t} \hat{u} = \Delta \hat{u} + \Delta \hat{u} + |\nabla \nabla \hat{u}|^2 \]

(i) From (1) \(\frac{d(\hat{u})^2}{dt} \mid_{\text{max}} \leq 2(\hat{u})^2 \mid_{\text{max}} \implies \frac{\partial}{\partial t} (\hat{u})^2 \leq 0 \).

Thus \((\hat{u})^2 \mid_{\text{max}} \leq \epsilon_2 \) on \([0,2]\) \(\Rightarrow ||\hat{u}(t)|| \leq \epsilon_2 \) for \(t \in [0,2] \).

(ii) \(\frac{\partial}{\partial t} (\epsilon^2 (\hat{u}^2 + t|\nabla \hat{u}|^2)) < \Delta (\epsilon^2 (\hat{u}^2 + t|\nabla \hat{u}|^2)) \)
Putting the minimum in,

\[e^{-2t} \left(\| u \|^2 + t |\nabla u|^2 \right) \leq \varepsilon^2 \Rightarrow |\nabla u|^2 \leq \varepsilon^2 e^{-4t} \quad \forall t \in [1/2], \]

Using similar techniques we can show:

\[|\Delta u|^2 (t) < 2ne^5 \varepsilon \quad \text{at} \ t = 2. \]

Recall, \(b = \int_X u e^{-u^*} \). In order to prove part (i) of Thm 1 it suffices to show that \(\Delta u \rightarrow 0 \). By Lemma 1, it is enough to show \(\| u \|_{C^0} \rightarrow 0 \). To do this, it suffices to show that \(b \), and \(\| u - b \|_{C^0} \rightarrow 0 \) as \(t \rightarrow \infty \).

Lemma: (Poincaré Inequality for the measure \(e^{-u^*} \))

\[
\int_X f^2 e^{-u^*} < \int_X |\nabla f|^2 e^{-u^*} + \left(\int_X f e^{-u^*} \right)^2
\]

\[\forall f \in C^0(X). \]

pf:

Consider the elliptic operator \(L := -g^i_j \nabla_i \nabla_j u + g^i_j \nabla_i u \nabla_j u \).

Observe that \(L \) is elliptic, and self-adjoint with the inner product

\[\langle \psi, \phi \rangle = \int_X \psi \phi e^{-u^*} \] for \(\psi, \phi \in C^0(X). \) Thus \(L \) has all real, non-negative eigenvalues. Note that if \(f \) is an eigenfunction with \(\lambda \) its eigenvalue, then

\[\int_X |\nabla f|^2 e^{-u^*} = \langle Lf, f \rangle = \lambda \int_X f^2 e^{-u^*}. \]

So \(L \) has all real, non-negative eigenvalues, and it's eigenfunctions are orthogonal.
Show that if \(f \in \ker L \) (i.e., \(\int f e^{-\omega} = 0 \)), then \(\lambda > 1 \). To do this, we use Bernstein's trick. Differentiating the equation gives (wrt. \(\nabla_x \)):

\[
-g^j k \nabla_j \nabla_k f + j \nabla_j \nabla_k u \nabla_j f + g^j k \nabla_j u \nabla_k f.
\]

Now, multiply by \(g^m \nabla_m f \). We get:

\[
-g^j k \nabla_j \nabla_k f + j \nabla_j \nabla_k u \nabla_j f + g^j k \nabla_j u \nabla_k f \nabla_m f g^m + j \nabla_j \nabla_k f \nabla_m f g^m + j \nabla_j \nabla_k f \nabla_m f g^m.
\]

\[
= -g^j k \nabla_j \nabla_k f + R_{x^j k} \nabla_j f + ... \]

Now multiply by \(g^m \nabla_m f \) and integrate:

\[
\int g^j k \nabla_j \nabla_k f g^m \nabla_m f + g^m k \nabla_j \nabla_k f \nabla_j f + g^m k \nabla_j \nabla_k u \nabla_j f \nabla_m f g^m \nabla_k f
\]

\[
+ \int g^j k \nabla_j u \nabla_k f g^m \nabla_m f \nabla_j f e^{-\omega} = \lambda \int g^m \nabla_m f \nabla_j f e^{-\omega} \]

Integrate by parts in the 1st term. When \(\nabla_j \) lands on \(e^{-\omega} \), the result is killed by \(\nabla \). Also \(\nabla \nabla_j u = g^j \nabla_j f - R_{x^j k} \nabla_k f \), so
\[
\int_\mathbb{H} \nabla \tilde{f} \cdot e^{-u} w^n + \int_\mathbb{H} \nabla f \cdot e^{-u} w^n = \lambda \int_\mathbb{H} \nabla f \cdot e^{-u} w^n
\]

Thus \(\lambda > 1 \). Now in general, given \(f \in C^\infty(\mathbb{H}) \), write

\[
\tilde{f} = f - \frac{1}{V} \int_\mathbb{H} f e^{-u} w^n.
\]

Then \(\tilde{f} \perp \ker L \) wrt \(\langle \cdot, \cdot \rangle_u \).

Thus \(\tilde{f} \) is in the span of the eigenfunctions, and we have

\[
\frac{1}{V} \int_\mathbb{H} \nabla \tilde{f} \cdot e^{-u} w^n \leq \frac{1}{V} \int_\mathbb{H} \nabla f \cdot e^{-u} w^n = \frac{1}{V} \int_\mathbb{H} f e^{-u} w^n - \left(\frac{1}{V} \int_\mathbb{H} f e^{-u} w^n \right)^2
\]

Since \(\nabla \tilde{f} = \nabla f \), we're done \(\Box \).

Lemma 3: we have:

(i) \(0 < -b \leq \|u - b\|_c \)

(ii) \(\|u - b\|^\infty \leq C \|u\|_{L^2} \|u\|_c \)

Proof: Note that the measure \(e^{-u} w^n \) has unit mass, and so we can apply Jensen's Formula. In particular

\[
b = \frac{1}{V} \int \nabla u \cdot e^{-u} w^n \leq \log \left(\frac{1}{V} \int e^u e^{-u} w^n \right) = 0.
\]

Moreover, \(\int e^{-u} w^n = 1 \) by assumption. In particular, \(\sup_x u > 0 \)

Thus

\[
0 < -b \leq \sup_x (u - b) \quad \text{proving (i)}.
\]
To prove (ii) set \(A = \sup_x |u-b| = |u-b|(x_0) \). Since \(U \) is \(C^\infty \) and \(r > 0 \) st. \(|u-b| > \frac{A}{2} \) on \(B_r(x_0) \). Let \(\rho \) be as in Perelman's non-collapsing result. Then, clearly we can take \(r = \frac{A}{2\nu \| U \|_{C^0}} \). If \(r < \rho \), then

\[
\int_{B_r(x_0)} (u-b)^2 \geq \left(\frac{A}{2} \right)^2 r^{2n} = \frac{A^2}{4} c \frac{A^n}{r^{4n}} \geq \frac{A^{2n+2}}{2^n \| U \|_{C^0}^{2n}} \geq \frac{A^{2n+2}}{\nu \| U \|_{C^0}^{2n}}.
\]

Note: Here we have used Perelman's non-collapsing result so that \(c \) is independent of time.

Thus,

\[
\| u-b \|_{L^\infty} \leq C \| u-b \|_{L^2} \| U \|_{C^0} \leq C \| U \|_{C^0} \| U \|_{L^2} \quad \text{(see below)}
\]

Now apply Lemma 2: we have:

\[
\int_{x(p)} (u-b)^2 \frac{w^n}{V} \leq C_2 \int (u-b)^2 \frac{w^n}{V} \leq C_3 \int \frac{\| U \|_{C^0}^2 w^n}{V} \leq C_4 \int \frac{\| U \|_{C^0}^2 w^n}{V}.
\]

If \(r > \rho \), then integrate over \(B_\rho \) to get an even stronger result.

Rule: (i) Perelman's non-collapsing estimate is crucial

(ii) we probably didn't need the full strength of Lemma 2

(iii) If \(Mab > -C \), then we know \(\| U \|_{L^2} \to 0 \).
the pf of part (i) of theorem (i).

Proof of Theorem 1 part (ii) and Theorem 2.
we begin by proving that Stability (A) and (S) yield exponential convergence, which is Part (i) of Thm 2. We do this by proving 2 Lemmas:

Lemma 5: if $\lambda > -c > -\infty$, and $\lambda_t > \lambda > 0$, then there exist $\mu, c > 0$, independent of t, such that

(i) $\|v(t)\|_{L^2(t)} \leq C e^{-\mu t}$

(ii) $\|u(t)\|_{C^0} + \|\nabla u(t)\|_{C^0} + \|R-N\|_{C^0} \leq C e^{-\frac{t}{2(1-n)}} \mu t$

(i) is obviously necessary. It turns out that (ii) is sufficient.

Lemma 6: Assume $R(t)$ has $\int_0^\infty |R-N| dt < \infty$. Then the KRF converges exponentially to a KE metric.

We first prove Lemma 6. The idea is that the integrability of $|R-N|_{C^0}$ implies a uniform bound for Φ (the Kähler Potential).
Let \(f_{j+1} = (f_j)_{j+1} + \Delta f_{j+1} \). Where we normalize \(\mathbf{q} \) by

\[
\mathbf{q} = \log \left[\frac{\det (g_0 + \Delta \mathbf{q})}{\det (g_0)} \right] + \mathbf{q} + \mathbf{u}(\mathbf{t}) \quad \mathbf{q}(0) = \mathbf{c}_0
\]

where \(\mathbf{c}_0 = \int_0^\infty \left(-t \| \nabla \mathbf{q} \|_L^2 \right) dt + \frac{1}{V} \int \mathbf{u}(\mathbf{t}) \omega_0^n \)

(Why this is a good choice is taken up in Phong, Storm, Sisum which will be covered later C?).

Then we have \(\mathbf{q} = \mathbf{q} - \log \left[\frac{\det (g_0 + \Delta \mathbf{q})}{\det (g_0)} \right] - \mathbf{u}(\mathbf{t}) \)

Penelma’s Band: For \(\mathbf{u} \) implies that \(\mathbf{q} \) is bounded.

Thus, it suffices to bound the 2nd Term. But we have:

\[
\left| \left[\log \frac{\omega^n}{\omega_0^n} \right] \right| \leq \left| \int_0^t \frac{d}{dt} \left(\log \frac{\omega^n}{\omega_0^n} \right) dt \right| = \left| \int_0^t \frac{\partial}{\partial t} \left(\log \frac{\omega^n}{\omega_0^n} \right) dt \right| = \left| \int_0^t \left(\frac{\partial}{\partial t} \right) \left(\frac{\omega^n}{\omega_0^n} \right) dt \right| = \left| \int_0^t \mathbf{R} \cdot \mathbf{n} dt \right| < C < \infty \quad \text{where } C \text{ is independent of time.}
\]

Thus \(\left| \mathbf{q} \right| \leq C \quad \text{independent of time. we now have:} \)

\[
\left| \mathbf{q} \right| \leq C_0 + \left| \mathbf{q} \right| + \left| \nabla \phi \right| + \left| \Delta \phi \right| < C \quad \text{independent of time.}
\]
Lemma ([PSSJ], 2.4)
with our choice of c_0, we have:

\[
\sup_{t \geq 0} \| \varphi \|_{c_0} \leq A_0 < \infty \quad \Longleftrightarrow \quad \sup_{t \geq 0} \| \varphi \|_{c_k} \leq A_k < \infty
\]

\[\forall k \in \mathbb{N}.\]

This is essentially the parabolic analogue of Yau-Aubin estimates.

Once we have uniform boundedness of the $\| \varphi \|_{c_k}$, we know that the metrics $g^{t}_{k_j}(t)$ are uniformly bounded. By Arzela-Ascoli, we can find times $t_m \to \infty$ s.t. $g(t_m)$ converge in C^∞ and $g^{t}_{k_j}(t_m)$ converge in C^∞. Observe that, the metrics $g^{t}_{k_j}(t_m)$ are uniformly equivalent.

\[
\exists C \text{ s.t. } 1 \leq g^{t}_{k_j}(t_m) \leq (g^{t}_{k_j})_{k_j} \leq C g^{t}_{k_j}(t_m)
\]

Now, uniform equivalence + convergence in C^∞ for $g^{t}_{k_j}(t_m) \Rightarrow$ we have uniform curvature bounds for all derivatives.

Now, the assumption \Rightarrow $|\Delta U|_{C^0} \to 0$ as $t_m \to \infty$. But uniform equivalence \Rightarrow this is also true for $|\Delta_0 U|_{C^0}$. By the maximum principle $U(t) \to \text{const.}$

But $\int_{X} e^{-U} w = 1 \Rightarrow U \to 0$ as $t \to \infty$.

Thus $R_{k_j}^\infty - g_{k_j}^\infty = 0 \Rightarrow \varphi(\infty)$ is a potential for
Claim: The eigenvalues \(\lambda_t \geq \lambda > 0 \) as \(t \to \infty \).

Proof: Suppose not. Then \(\exists t_k \) s.t. \(\lambda_{t_k} \to 0 \). Extract a further subsequence (not relabeled) s.t. \(g(t_k) \to \) to KE metric. Note that the geometry is uniformly controlled along this sequence:

- Curvature control comes from \(g(t_k) \) converging in \(C^\infty \) and uniform equivalence.
- Inj. radius control follows from curvature control and Perelman's uniform diameter bound.

So: we can apply Kähler-Gromov compactness in the special case when \(J \) is fixed. (In particular, notice that in this case, the diffeomorphism group acting on \(J \) is trivial, so we have stability (B) trivially along the subsequence, and so we can apply the results of Lecture 1).

Thus \(0 = \lim_{k \to \infty} \lambda_{t_k} = \lambda(g_{\infty}) > 0 \).

Now, since we know a KE metric exists, we know that \(Mab \geq -c > \infty \), and so Lemma 5 \(\Rightarrow ||Dull(4)|| \to 0 \) exponentially.
we now know that the eigenvalue λ_t is not degenerating and that $|R_{\mu\nu}|$ is uniformly held along the flow. We can thus apply the same arguments as in Lecture 1 to show that $\|\nabla u\| \rightarrow 0$ and hence

$$H^{(5)}(w) \leq \frac{1}{c} \text{ we have uniform equivalence}$$

$$\|\nabla u\| \rightarrow 0 \quad \text{For any } k \text{ by Sobolev imbedding.}$$

But

$$\left| g_{ij} e_j \right| \leq \left| R_{\bar{k}j} - g_{\bar{k}j} \right| c_k \rightarrow 0$$

exponentially, and so the whole sequence converges.

we now prove Lemma 5:

recall from Lecture 1, we computed that

$$Y(\tau) \leq -2 \lambda_t Y - 2 \lambda_t \text{ Fut}(\Pi_t(\nabla u)) - \int_{\Omega} |\nabla u|^2 \langle R, n \rangle w^n$$

$$- \int_{\Omega} \nabla u \cdot \nabla^2 u (R_{\bar{k}j} - g_{\bar{k}j}) w^n.$$

For our case $1 = 0$ since $\lambda \phi > -c > \infty$, 2 we can control by Part (i) of Thm 1 (for t large $\leq \frac{\lambda}{2} \int |\nabla u|^2 w^n$)

However, 3, we have no control. Previously (Lec. 1) we were able to control 3 by c we assumed uniform curvature bounds. In the absence of this assumption we need to work harder.
Claim: \(\exists K_0 > 0 \text{ s.t.} \)

\[
\dot{Y}(t) \leq -\lambda Y(t) + \frac{\lambda}{2} Y^2(t) \cdot \prod_{j=1}^{N} \left[Y(t-a_j) \right]^{\frac{\delta_j}{2}} \quad \forall t \geq K_0
\]

where \(N, a_j \in \mathbb{N} \), \(\delta_j \in \mathbb{R}^+ \), \(\sum_{j=1}^{N} \delta_j = 1 \).

Proof:

We want to estimate

\[
\left| \int \nabla u \nabla \tilde{u} \left(E_{k_j} - g_{k_j} \right) \right|
\]

\[
\leq \|u\|_{C^0} \left(\int |u|^2 \right)^{\frac{1}{2}} \left(\int |E_{k_j} - g_{k_j}|^2 \right)^{\frac{1}{2}}
\]

Now

\[
\int |E_{k_j} - g_{k_j}|^2 = \int |E_{k_j} - g_{k_j}|^2 \omega^n \overset{\text{IBP}}{=} \int |u|^2 \omega^n = \int |R-n|^2 \omega^n
\]

\[
\left(\int |R-n|^2 \omega^n \right)^{\frac{1}{2}} \leq \sup_x |R-n| \leq K \sup_x |u| (t-2)
\]

\[
\leq K \sup_x |u-b| (t-2) + |b| (t-2)
\]

Lemma 3

\[
\leq C \left\| \nabla u \right\|_{(t-2)} \left\| \nabla u \right\|_{(t-2)}^{\frac{1}{2}}
\]

Lemma 3

\[
\leq C \left\| \nabla u \right\|_{(t-2)} \left\| \nabla u \right\|_{(t-2)}^{\frac{1}{2}}
\]

So, we have shown that:

\[
\left| \int \nabla u \nabla \tilde{u} \left(E_{k_j} - g_{k_j} \right) \right| \leq C \left\| \nabla u \right\|_{(t-2)} \left\| \nabla u \right\|_{(t)}^{\frac{1}{2}} \left\| \nabla u \right\|_{(t-2)}^{\frac{1}{2}}
\]

Note moreover, the last 3 inequalities are general.
and show that \[\| \nabla u \| (t) \leq C \| u - b \| (t-2) \]

\[\leq C_2 \| \nabla u \|_{C^0} \| u \|_{L^2} \quad (\forall t) \]

By iterating this inequality, we can transfer weight from the \(C^0 \) norm to the \(L^2 \) norm.

\[\text{Let } g(t) = \prod_j A(t - a_j j) \prod_k B(t - b_k k) \quad \text{where} \]

\[A(t) = \| \nabla u \|_{L^2} \quad B(t) = \| \nabla u \|_{C^0} \quad \text{Note that, initially} \]

\[\sum_j a_j = \sigma \quad \sum_k b_k = \Sigma \quad \text{have } \sigma + \Sigma = 2 \quad (1 + \frac{n}{n+1} + \frac{1}{n+1} = 2) \]

\[a_j, b_k > 0 \quad \text{Then, iterating (X) shows} \]

\[g(t) \leq C \tilde{g}(t) \quad \text{where } \tilde{g}(t) = \prod_j A(t - \tilde{a}_j j) \prod_k B(t - \tilde{b}_k k) \]

\[\text{and } \tilde{a} = \sum_j \tilde{a}_j \quad \tilde{b} = \sum_k \tilde{b}_k \quad \text{have } \tilde{\sigma} + \tilde{\Sigma} = 2. \]

\[\text{Ex:} \]

\[\| \nabla u \|_{C^0} \| \nabla u \|_{L^2} \| \nabla u \|_{C^0} \| \nabla u \|_{L^2} \leq \| \nabla u \|_{L^2} \| \nabla u \|_{L^2} \| \nabla u \|_{L^2} \| \nabla u \|_{L^2} \]

\[\| \nabla u \|_{L^2} \| \nabla u \|_{L^2} \| \nabla u \|_{L^2} \| \nabla u \|_{L^2} \]

\[\text{Note: that } \tilde{\sigma} + \tilde{\Sigma} = 1 \text{ is clear by scaling.} \]

\[\text{Note that every iteration increases } \tilde{\sigma}, \text{ and so eventually we will have } \tilde{\Sigma} < 1. \text{ Then, set } \tilde{a}_j = \tilde{\sigma} \tilde{\sigma}_{\tilde{a}_j}, \text{ and we get} \]
\[\| v \|_{L^2(t_0)} + \| v \|_{L^2(t_2)} \leq H(t) \prod_{j} A(t - \tilde{a}_j) \delta_j \]

where \(H(t) = \sum_{k} B(t - b_k) \prod_{j} A(t - \tilde{a}_j) \delta_j \).

Now by construction \(\delta_j - \delta_j > 0 \). Thus, by Realman's bound \(B \) is banded along the flow, and by Lemma 4, we see \(H(t) \to 0 \) as \(t \to \infty \). Thus, we find for \(k_0 \) large such that

\[\dot{Y}(t) \leq -\lambda Y(t) + \frac{\lambda}{2} \gamma_{\frac{1}{2}}(t) \prod_{j=1}^{N} \gamma_{\frac{1}{2}}(t - a_j) \delta_j \quad \forall t \geq k_0 \]

Let \(F(t) = Re^{-\mu t} \) for some \(R, \mu > 0 \) TBD.

Claim: \(Y(t) \leq F(t) \)

Proof: Suppose not, choose \(R \) large such that \(Y(t) < F(t) \) for \(t < t_0 \) and \(Y(t_0) = F(t_0) \). Then we can assume that

\[\dot{Y}(t_0) \geq F(t_0) = -\mu F(t_0) \] By our previous inequality

\[-\mu F(t_0) \leq -\lambda Y(t_0) + \frac{\lambda}{2} \gamma_{\frac{1}{2}}(t_0) \prod_{j} \gamma_{\frac{1}{2}}(t_0 - a_j) \delta_j \]

\[-\mu F(t_0) \leq -\lambda F(t_0) + \frac{\lambda}{2} F(t_0) \prod_{j=1}^{N} F(t_0 - a_j) \]

\[-\mu F(t_0) \leq -\lambda F(t_0) + \frac{\lambda}{2} F(t_0) \prod_{j} F(t_0 - a_j) \delta_j \]

\[-\mu F(t_0) \leq -\lambda F(t_0) + \frac{\lambda}{2} F(t_0) \prod_{j=1}^{N} F(t_0 - a_j) \delta_j \]

\[-\mu F(t_0) \leq -\lambda F(t_0) + \frac{\lambda}{2} F(t_0) \prod_{j} F(t_0 - a_j) \delta_j \]

\[-\mu F(t_0) \leq -\lambda F(t_0) + \frac{\lambda}{2} F(t_0) \prod_{j=1}^{N} F(t_0 - a_j) \delta_j \]
\[-\lambda Re^{\mu t_0} + \frac{\lambda}{2} Re^{\frac{\mu t_0}{2}} e^{\frac{\mu}{2} (t_0 - a_j) \delta_j} = -\mu e^{\mu t_0} \Rightarrow -\lambda Re^{\mu t_0} + \frac{\lambda}{2} Re^{\frac{\mu t_0}{2}} + \mu e^{\frac{\mu}{2} a_j \delta_j} \Rightarrow -\mu e^{\mu t_0} \Rightarrow \]

By choosing \(\mu \) sufficiently small (\(a_j, \delta_j \) depend only on \(n \)) we can ensure this does not hold. Thus, \(y(t) \leq F(t) \) and so exponential decay follows.

Lemma 3 \(\Rightarrow \) \(\|u\|_{c^0} \) decays exponentially, and finally

Lemma 1 \(\Rightarrow \) \(\|R-n\|_{c^0}, \|u\|_{c^n} \) decay exponentially.

The proof of Theorem 1 part (ii) follows in much the same way. Theorem 2 parts (ii) and (iii) follow in a similar fashion as Lemma 6.