Introduction to the KRF, a.c.s

Perelman’s Functional.

Outline:
(1) Introduction to the Ricci Flow.
(2) Perelman’s Energy Functional
 (2.1) Gradient Flow and Relation to the Ricci Flow.
 (2.2) Monotonicity.
(3) The Entropy Functional
 (3.1) Gradient Flow
 (3.2) Monotonicity
 (3.3) The μ Functional.
(4) Applications:
 (4.1) No Local Collapsing
 (4.2) Uniform bounds for Ricci, Potential, Scalar Curv. and Diameter
 (4.3) Uniform Sobolev Embedding for KRF.

(1) Intro. Without loss of generality, we assume $[\omega_0] = C_1(x)$ for $k \geq 1$.

The K-Ricci Flow is defined by
\[
\frac{d g_{ij}}{d t} = -Ric_{ij}
\] (1)

This is unnormalized. The normalized RF is
\[
\frac{d g_{ij}}{d t} = Kg_{ij} + (t) - Ric_{ij} \]
\[g_{ij}(0) = (g_0)_{ij} \] (N1)

\[
9_{ij}(0) = (9_0)_{ij}
\]

\[9_{ij}(t) = \ldots \]
we can transform a solution to the RF to a solution of the RF on \([0, T]\) (where \(T\) is the max. existence time) by setting \(\tilde{g}(t) = (T-t)g\).
Let \((X,\omega)\) be a Kähler mfd. \(\dim_{\mathbb{C}} X = n\)

The Ricci flow is defined by
\[\begin{aligned}
\frac{dg_{ij}}{dt} &= -R_{\bar{k}j}^i \\
g_{ij}^{(0)} &= (g_0)_{ij} \\
\end{aligned} \tag{1} \]

if \(\rho\) is the Ricci Form, then the flow is defined on forms by
\[\begin{aligned}
\frac{dw}{dt} &= -\rho \quad \text{(1')} \quad \text{Suppose we knew that the flow existed on } [0,\varepsilon), \text{ and that } w(t) \text{ was a closed, positive, } \Omega \text{ Form } \forall t \in [0,\varepsilon) \text{. Since } C_1(X) = [\rho] \text{ is independent of the metric, we have: (taking cohomology classes of (1'))}
\end{aligned} \]

\[\frac{d [w(t)]}{dt} = -[\rho(t)] = -[\rho(0)] \quad \text{Thus, } [w(t)] = [w(0)] - t[\rho(0)] \]

Thus \(\frac{d}{dt} w(t) - w(0) + t\rho(0)\) is exact for \(t \geq 0\). By the \(\delta\bar{\delta}\)-lemma we can find \(\phi(t)\) so that
\[g_{ij}^{(t)} - (g_0)_{ij} = t \partial_{\bar{k}} \partial_k \log \det ((g_0)_{ij}) + \partial_{\bar{k}} \partial_k \phi(t). \]

So differentiating yields:
\[\partial_{\bar{k}} \partial_k \phi = -R_{\bar{k}j}^{ij} + R_{\bar{k}j}^{ij} = \partial_{\bar{k}} \partial_k \log \det ((g_0)_{ij}) + t \partial_{\bar{k}} \log \det (g_{ij}^{(t)}) \]

\[\partial_{\bar{k}} \partial_k \log \left[\frac{\det (g_0 + t\partial_{\bar{k}} \log \det g_0 + t\partial_{\bar{k}} \phi(t))}{\det (g_0)} \right] \]
Applying the Maximum Principle yields the Scalar eq'n:

\[
\phi = \log \frac{\det (g_0 + \Delta \log \det g_0 + \Delta \phi)}{\det (g_0)}.
\]

For some constant \(c_1(t) \). By Parabolic Theory there is a unique solution. This shows that we have short time existence, and that the RF preserves the Kähler condition.

Consider now the case when \([w]_k = [\rho]_k = c_1(x)\).

This will be the primary case of interest, as we want to produce Einstein metrics. We can then consider the

Normalized KRF:

\[
\begin{align*}
\frac{dg}{dt} &= -Ric + Kg. \\
g(0) &= g_0.
\end{align*}
\]

(Note: \(K \) determined purely topologically.

In this case, the eq'n on Forms is:

\[
\begin{align*}
\frac{dw}{dt} &= -\rho + Kw \\
w(0) &= w_0.
\end{align*}
\]

(\(N^* \))

A solution to \((N^*)\) can be converted to a solution of the KRF by setting \(\tilde{g}(t) = (1-t)g(-\ln(1-t)) \) (when \(K = 1 \)).

Thus, we have short time existence, and preservation of the Kähler condition.

\[
\frac{\partial [w]}{\partial t} = 0
\]
using a similar argument we can write the PMA eq.

$$\frac{d\Phi}{dt} = \log \left[\frac{\det (g_o + \delta \Phi)}{\det g_o} \right] + k \Phi - f_o + c_1(t)$$

For some function $c_1(t)$. f_o is defined by $\rho_o - \frac{k \rho_o}{\Theta} = 2\Theta f$

Thm (Ca0).

For $k \geq 0$, the solution to the NKRF (NK*) exists on $[0, \infty)$, and is unique. When $k < 0$, the NKRF converges exponentially fast in every C^k norm to the unique KE metric g_{00} in the Kähler class $[\omega_J]$

Remark

This provides a RF proof of the Calabi Conjecture when $c_1 < 0$. Thus, we only care about the $c_1 > 0$ case (Fano). We will (who?) take $k=1$.

NKRF:

Pros: Volume is preserved, existence on $[0, \infty)$, Simpler Scalar equation (?).

Cons: Singularities occur at ∞, and so are difficult to analyze.

The Energy Functional:

We define $\Psi : \text{Met}(x) \times C^\infty(x) \to \mathbb{R}$ by

$$\Psi(g, f) = \int_x (R + 4\pi f^2) e^{-f} d\text{vol}$$
Properties: (a) \mathcal{F} is diffeomorphism invariant.

If $\phi: X \rightarrow X$ is a diffeomorphism

then $\mathcal{F}(\phi^*g, f \circ \phi) = \mathcal{F}(g, f)$.

(b) if $c > 0$, be \mathbb{R}, then

$\mathcal{F}(cg, c^2 f + b) = e^{c^2 n - 2} \mathcal{F}(g, f)$.

We now compute the Variation of \mathcal{F}.

If we $C^\infty (X, S^2 T^* X)$, he $C^\infty (X)$ (here we regard X as a 2n-dim' Real mfd. we Forget the cplx structure).

Then, set $V = g^{ij} V_{ij}$

$$
\delta \mathcal{F} (V,h) = - \int_X V_{ij} \left[(Ric)_{ij} + \nabla_i \nabla_j f \right] e^{-f} \, d\mu

+ \int_X (V - h) \left(2 \Delta f - \nabla^2 f + R \right) e^{-f} \, d\mu.
$$

Exercise: Do this Computation.

Hint: It's enough to do the computation at a point.

Then use normal coordinates.

and $\delta \mathcal{F} (V,h) = \frac{d}{ds} |_{s=0} \mathcal{F}(g + sv, f + sh)$.

Note: if $V_{ij} = -(Ric)_{ij} + \nabla_i \nabla_j f$,

$V = g^{ij} V_{ij} = -(R + \Delta f) = h$, then $\delta \mathcal{F} (V, h) \geq 0$.
with \(\delta F(v_1h) = 0 \) iff \((Ric)_ij = -\nabla_i \nabla_j f. \)

Thus, if \(f(t), g(t) \) solve

\[
\begin{align*}
\frac{dg}{dt}_ij &= -(Ric)_ij - \nabla_i \nabla_j f \quad (**)
\frac{df}{dt} &= -\Delta f - R \quad (\Delta \text{ is Laplace wrt } g(t)!)
\end{align*}
\]

Then \(F(g(t), f(t)) \) is increasing!

\(\text{Note: (i) The equation } \frac{df}{dt} = -\Delta f - R \text{ is equivalent to the fact that } \frac{d}{dt} \left(\int e^{-f} dvol \right) = 0 \text{ along the flow } (**). \)

\(\text{for } g. \text{ That is, we are preserving the measure } e^{-f} dvol! \)

\(\text{c.ii) The evolution } \text{ for } f \text{ is a Backwards heat equation.} \)

\(\text{So in general, we can't solve an initial value problem.} \)

KEY RESULT (**) is Related to the RF by diffreos.

Lemma: Let \(g(t) \) solve RF, on \([0,T]\), and let \(f_T \) be a function on \(X \).

\(\text{(i) we can solve } \frac{\partial f}{\partial t} = -\Delta f + 4\nabla f^2 - R \quad \text{for } t \in [0,T] \)

\(f(T) = f_T. \)

\(\text{(ii) Given a solution } \phi(t), \text{ define a family of diffreos' } \phi(t): X \to X \text{ by } \)

\[
\begin{align*}
\frac{d\phi}{dt} &= -\frac{1}{2} \nabla^{g(t)} f(t) \\
\phi(0) &= id_X.
\end{align*}
\]
(This is a system of ODE, hence is solvable). Then
\[\bar{g}(t) = \Phi^*(t) g(t), \quad \text{and} \quad \bar{f}(t) = \Phi^*(t) f(t) = f_{\bar{g}} \Phi(t) \] Solve
\[(**). \]

Sketch:
(i) Set \(u = e^{-f} \), \(T = T - t \). Then
\[\frac{du}{dT} = - \frac{\partial u}{\partial T} = u \frac{df}{dT} = u \left(-\Delta f + |\nabla f|^2 - R \right) = \Delta u - R u. \]
This is parabolic, and hence solvable.

(ii) It's mostly difficult to compute \((\Phi^*(t) g(t))'\),

It is easier to compute \(\frac{d}{ds} \left| \Phi^*(s) g(t) \right| \) and \(\frac{d}{dt} \left| \Phi^*(s) g(t) \right| \) at \(s = t \).

For the first we can identify this as a Lie Derivative along the \(\nabla f, \frac{1}{2} \nabla f \). We leave the details as an exercise.

We now obtain the Monotonicity of \(\bar{T} \):

Proposition: If \((g(t), f(t))\) is a solution to
\[\frac{\partial g_{ij}}{\partial t} = -(\text{Ric})_{ij} \]
\[\frac{\partial f}{\partial t} = -\Delta f + |\nabla f|^2 - R \]
Then \(\bar{T}(g(t), f(t)) \) is monotonically, and \(\frac{dT}{dt} = 0 \) iff
\[\frac{\partial g_{ij}}{\partial t} = -(\text{Ric})_{ij} - \nabla_i \nabla_j f \]
If g_{ij} solves RF, $g(0)$ Kähler, then:

$$\frac{\partial g_{ij}}{\partial t} = -R_{ij}$$

$$\frac{\partial f}{\partial t} = -\Delta f + \left| \nabla_i \nabla_j f \right|^2 - R$$

(Go back To Variational Formula and set $V_{ij} = V_{i,j} = 0$).

The Entropy Functional.

Define $W : \text{Met}(X) \times C^\infty(X) \times R^+ \rightarrow R$ by

$$W(f, g, \tau) = \left(4\pi \tau \right)^n \int_X \left[\tau \left(R + 16f^2 \right) + (f - 2n) \right] e^{-f} \text{dVol}.$$

Exercise: Compute The Variation of W by using the Formula For δW.

The Evolution Eqn's are:

$$\left\{ \begin{array}{l}
\frac{\partial g_{ij}}{\partial t} = - \left(R_{ij} + \nabla_i \nabla_j f \right) \\
\frac{\partial f}{\partial t} = - \Delta f - R + \frac{n}{2\tau} \\
\frac{\partial \tau}{\partial t} = -1
\end{array} \right.$$

In a similar manner to the Gradient Flow eqn's for the functional T, these are coupled to the Ricci Flow

Follows: Via diffeomorphisms. The System For The Ricci Flow is
\[
\begin{align*}
\frac{\partial g_{ij}}{\partial t} &= -R_{ij} \\
\frac{\partial f}{\partial t} &= -\Delta f + |\nabla f|^2 - R + \frac{n}{4} \\
\frac{d\tau}{dt} &= -1
\end{align*}
\]

By a similar argument as before, we can solve these equations, and we obtain: If \((g, f, \tau)\) solve (II),

\[W(g(t), f(t), \tau(t)) \to \]

Observe: \(W\) is diffeomorphism independent, and

\[W(g_t, f_t, \tau_t) = W(g, f, \tau)\]

The \(\mu\) Functional

Define:

\[\mathcal{X}_{(g, \tau)} = \left\{ f \in C^\infty(X) \mid \int (4\pi \tau)^{-n/2} e^{-f} d\text{vol} = 1 \right\} \]

\[\mu(g, \tau) = \max_{f \in \mathcal{X}} W(g, f, \tau).\]

Remarks:

(i) \(\mu\) is diffeo. independent

(ii) \(\mu(g_t, \tau_t) = \mu(g, \tau)\)

(iii) \(\mu\) is increasing along the Ricci flow.

If choose \(f \in \mathcal{X}(g_{(t)}, \tau_{(t)})\). Solve, the system (II) (just the backward Heat eq'n).

\[\mu(g(0), \tau(0)) \leq W(g(0), f(0), \tau(0)) \leq W(g(t), f(t), \tau(t))\]
Use the fact that \((\Box) \) preserves \(X \) in

\[
\left(\frac{\Gamma(n)}{2\pi} \right)^{-n/2} e^{-f(t)} \text{dVol}(t) = 1.
\]
Then take Inf on RHS.

Lemma 6.23: (Finiteness of \(\mu \)).

For any given \(g \) and \(\varepsilon > 0 \) on a closed manifold \(X \),

\[
\mu(g, \varepsilon) > -\infty.
\]

Proof: Since \(\mu(g, 1) = \mu(\varepsilon g, \varepsilon) \) and \(\varepsilon > 0 \), it suffices to prove that \(\mu(g, 1) > -\infty \). Equivalently, \(\exists C = C(g) \) such that \(W(g, f, t) > C \) for \(f \in X(g, \varepsilon) \).

Let \(V = (4\pi)^{-n/2} e^{-f/2} \). Then

\[
W(g, f, t) = \int_X \left(\frac{1}{2} |W|^2 + (R - 2\log w - \frac{n}{2} \log (4\pi) - n) w^2 \right) d\mu
\]

for \(w > 0 \) s.t. \(\int w^2 = 1 \). Clearly, it suffices to show

\[
\int w^2 \log w^4 d\mu \leq 2 \int \|W\|^2 d\mu + C.
\]

Which is a consequence of the following log Sobolev Inequality.
Lemma (Log Sob.)

Let \((M^n, g)\) be a closed Riemannian mfd. For any \(a > 0\), \(\exists C(a, g) \text{ s.t. if } \varphi > 0 \text{ has } \int \varphi^2 d\mu = 1, \text{ then}

\[
\int_{M} \varphi^2 \log \varphi \leq a \int \nabla \varphi^2 + C(a, g).
\]

Proof Sobolev \(\Rightarrow \left(\int \varphi^{\frac{2n}{n-2}} \right)^{\frac{n-2}{2n}} \leq C_S(M, g) \int \nabla \varphi^2 + \text{Vol}(M)^{-\frac{2}{n}} \)

It is easy to see that for \(x > 0\), \(x \log x \leq x^{\frac{3}{n}}\) (since \(x \leq e^x\) for every \(x\)). Thus

\[
\frac{2}{n} \int \varphi^2 \log \varphi \leq \int \varphi^{\frac{2}{n} + \frac{2}{n}} d\mu \leq 3 \int \varphi^{\frac{2}{n} + \frac{4}{n}} + \frac{1}{3} \int \varphi^2 d\mu
\]

\[
\leq 3 \left(\int (\varphi^2)^{\frac{n}{n-2}} \right)^{\frac{n-2}{2n}} \left(\int \varphi^{\frac{4}{n} \cdot \frac{2}{n}} \right)^{\frac{2}{n}} \leq \frac{1}{3} \int \varphi^2 d\mu
\]

\[
= \frac{1}{3} C_S(g)^{-1} \int \nabla \varphi^2 d\mu + \frac{1}{3} + \varepsilon \text{Vol}(M)^{-\frac{2}{n}} C_S(g)^{-1}
\]

Now set \(\varepsilon = \frac{2a C_S(g)}{n}\) and the result follows.

Lemma: For each \(g, \mathcal{C} \text{ \(\exists f \in \mathcal{C}(g, \mathcal{T})\), \(f\) smooth s.t.}

\[
\mathcal{M}(g, f, \mathcal{T}) = \mu(g, \mathcal{T}).
\]

Proof Omitted. But, the proof implies we can allow \(W^{1,2}\) Functions in the mfd.
No Local Collapsing.

Def'n: \((K\text{-non-collapsed})\)

Given \(p \in (0, \infty)\), and \(K > 0\), we say that the metric \(\hat{g}\) is \(K\text{-non-collapsed}\) below the scale \(\rho\) if for any metric ball \(B(x, r)\) with \(r < \rho\) satisfying \(1\text{Rm}(y) \leq r^{-2}\) \(\forall y \in B(x, r)\) we have

\[
\frac{\text{Vol}(B(x, r))}{r^n} \geq K.
\]

The following lemma relates this to non-collapse and shows non-collapse is equivalent to a injectivity radius bound.

Lemma: Let \((\hat{M}^n, \hat{g})\) be a complete Riemannian manifold and fix \(p \in (0, \infty)\).

(i) If \(\hat{g}\) is \(K\text{-non-collapsed}\) below the scale \(\rho\) for some \(K > 0\), then \(\exists \delta = \delta(p, K)\) s.t. if \(x \in \hat{M}\), \(r < \rho\), and \(1\text{Rm} \leq r^{-2}\) in \(B(x, r)\) then \(\text{inj}(x) \geq \delta r\).

(ii) \(\text{inj}(x) > \delta \Rightarrow K\text{-non-collapsed}\) ... See B. Chow Lemma 6.54.

Using the \(W\) functional, we can prove Non-collapse under a weaker curvature assumption.
Proposition: Let $g(t)$ be a solution of the NKRF. Then there exists $C > 0$, depending only on $g(0)$, such that for any $g(t)$ with $|t| < 1$ on $B_{g(t)}(x, 1)$.

Proposition': Let $\tilde{g}(t)$ be a solution of the KRF. Then there exists $K = K(\tilde{g}(0)) > 0$ such that if $|t| < \frac{1}{r^2}$, in a ball $B_{\tilde{g}}(p, r)$, we have $\text{Vol}(B_{\tilde{g}}(p, r)) \geq Kr^{2n}$.