1 (20 pts). Find the limit
\[
\lim_{x \to \infty} \cos(e^{-x}).
\]

Solution Let \(t = e^{-x} \) then \(t \) has limit 0 as \(x \) goes to \(\infty \). It follows that
\[
\lim_{x \to \infty} \cos(e^{-x}) = \lim_{t \to 0} \cos t = \cos 0 = 1.
\]

2 (20 pts). Find the limit
\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - \sqrt{2x}}{x^2 - 2x}.
\]

Solution The limit is of type \(\frac{0}{0} \). We want to rationalize the numerate by multiply it by its conjugate and then cancel a term like \(x - 2 \):
\[
\lim_{x \to 2} \frac{\sqrt{x} + 2 - \sqrt{2x}}{x^2 - 2x} \cdot \frac{x + 1}{x + 1} = \lim_{x \to 2} \frac{(x + 2) - (2x)}{(x^2 - 2x)(\sqrt{x} + 2 + \sqrt{2x})} = \lim_{x \to 2} \frac{-1}{x(\sqrt{x} + 2 + \sqrt{2x})} = -\frac{1}{8}.
\]

3 (20 pts). Find values of \(a \) and \(b \) such that \(f \) is differentiable everywhere:
\[
f(x) = \begin{cases}
x + 1 & \text{if } x \leq 1 \\
x^2 + ax + b & \text{if } x > 1
\end{cases}
\]

Solution The function is defined by two piece of differentiable function. Thus for any \(a \) and \(b \), the function differential at every point except at \(x = 1 \). The function of derivatives other than \(x = 1 \) is given by
\[
f'(x) = \begin{cases}
1 & \text{if } x < 1 \\
2x + a & \text{if } x > 1.
\end{cases}
\]
For \(f \) to be differentiable at \(x = 1 \), it is necessary and sufficient that the function is continuous at \(x = 1 \) with two half derivatives equal:

\[
\lim_{x \to 1^+} f(x) = \lim_{x \to 1^-} f(x) = f(1)
\]

\[
\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^-} f'(x).
\]

By our formulae for \(f(x) \) and \(f'(x) \), we see that these two conditions are equivalent to

\[
1 + 1 = 1 + a + b, \quad 1 = 2 + a.
\]

We have unique solution

\[
a = -1, \quad b = 2.
\]

4 (20 pts). Use intermediate value theorem for function

\[
f(x) = x - \cos x
\]

to prove that the equation

\[
\cos x = x
\]

has one solution in the interval \((0, 1)\).

Proof The solution of \(x = \cos x \) is equivalent to the solution \(f(x) = 0 \) in the interval \(x \in (0, 1) \). As \(f \) is continuous, by the intermediate value theorem, any value \(N \) between \(f(0) \) and \(f(1) \) will equal to \(f(c) \) for some \(c \in (0, 1) \). For our purpose, we take \(N = 0 \). Thus we need to show that two values \(f(0) \) and \(f(1) \) have different signs. Let us compute them separately as follows:

\[
f(0) = 0 - \cos 0 = -1 < 0, \quad f(1) = 1 - \cos 1 > 0.
\]

Here in the second equality we use the fact that \(\cos x < 1 \) for all \(x \) except multiples of \(2\pi \).

5 (20 pts). Find an equation of the tangent line to the curve

\[
y = e^x - x^2
\]

at the point \((0, 1)\).

Solution The slope of the tangent line at \((0, 1)\) is given by the derivative:

\[
\frac{dy}{dx}|_{x=0} = (e^x - 2x)|_{x=0} = e^0 - 2 \cdot 0 = 1.
\]

The tangent line at \((0, 1)\) is given by

\[
y - 1 = 1 \cdot (x - 0), \quad \text{or} \quad y = x + 1.
\]