NONLINEAR PDE's and POTENTIAL THEORY

Work with Reese Harvey

SOME HISTORY

Calibrated Geometries

Let ψ be an exterior p-form on \mathbb{R}^{n} (or on a riemannian manifold) with

$$
\begin{gathered}
d \Psi=0 \\
\left.\Psi\right|_{P} \leq d \text { vol }_{P} \quad \text { for all oriented } p \text {-planes } P
\end{gathered}
$$

SOME HISTORY

Calibrated Geometries

Let ψ be an exterior p-form on \mathbb{R}^{n} (or on a riemannian manifold) with

$$
\begin{gathered}
d \Psi=0 \\
\left.\Psi\right|_{P} \leq d \text { vol }_{P} \quad \text { for all oriented } p \text {-planes } P
\end{gathered}
$$

Define $G(\Psi) \equiv\left\{P:\left.\Psi\right|_{P}=d \mathrm{vol}_{P}\right\}$

SOME HISTORY

Calibrated Geometries

Let ψ be an exterior p-form on \mathbb{R}^{n} (or on a riemannian manifold) with

$$
\begin{gathered}
d \Psi=0 \\
\left.\Psi\right|_{P} \leq d \text { vol }_{P} \quad \text { for all oriented } p \text {-planes } P
\end{gathered}
$$

Define $G(\Psi) \equiv\left\{P:\left.\Psi\right|_{P}=d\right.$ vol $\left.{ }_{P}\right\}$
An oriented p-dimensional submanifold M is calibrated by ψ if

$$
T_{x} M \in G(\Psi) \quad \forall x \in M .
$$

SOME HISTORY

Calibrated Geometries

Let ψ be an exterior p-form on \mathbb{R}^{n} (or on a riemannian manifold) with

$$
\begin{gathered}
d \Psi=0 \\
\left.\Psi\right|_{P} \leq d \text { vol }_{P} \quad \text { for all oriented } p \text {-planes } P
\end{gathered}
$$

Define $G(\Psi) \equiv\left\{P:\left.\Psi\right|_{P}=d\right.$ vol $\left._{P}\right\}$
An oriented p-dimensional submanifold M is calibrated by ψ if

$$
T_{x} M \in G(\Psi) \quad \forall x \in M .
$$

LEMMA. If M is calibrated by Ψ, then M is homologically volume minimizing.

SOME HISTORY

Calibrated Geometries

Let ψ be an exterior p-form on \mathbb{R}^{n} (or on a riemannian manifold) with

$$
\begin{gathered}
d \Psi=0 \\
\left.\Psi\right|_{P} \leq d \text { vol }_{P} \quad \text { for all oriented } p \text {-planes } P
\end{gathered}
$$

Define $G(\Psi) \equiv\left\{P:\left.\Psi\right|_{P}=d\right.$ vol $\left._{P}\right\}$
An oriented p-dimensional submanifold M is calibrated by ψ if

$$
T_{x} M \in G(\Psi) \quad \forall x \in M
$$

LEMMA. If M is calibrated by Ψ, then M is homologically volume minimizing.

Proof: M^{\prime} another such manifold with $\partial M^{\prime}=\partial M$ (possibly $\left.=\emptyset\right)$

$$
\begin{gathered}
\text { and }\left[M-M^{\prime}\right]=0 \in H_{p} \\
\operatorname{vol}(M)=\int_{M} \Psi=\int_{M^{\prime}} \Psi \leq \operatorname{vol}\left(M^{\prime}\right)
\end{gathered}
$$

Ex: $\quad \psi=\omega=\sum_{k=1}^{n} \frac{i}{2} d z_{k} \wedge d \bar{z}_{k} \quad$ on \mathbb{C}^{n}

$$
\text { Ex: } \quad \Psi=\omega=\sum_{k=1}^{n} \frac{i}{2} d z_{k} \wedge d \bar{z}_{k} \quad \text { on } \mathbb{C}^{n}
$$

(also on any Kähler manifold).

Ex: $\quad \psi=\omega=\sum_{k=1}^{n} \frac{i}{2} d z_{k} \wedge d \bar{z}_{k} \quad$ on \mathbb{C}^{n}
(also on any Kähler manifold).
Ex: $\quad \psi=\frac{1}{p!} \omega^{p}$

Ex: $\quad \psi=\omega=\sum_{k=1}^{n} \frac{i}{2} d z_{k} \wedge d \bar{z}_{k} \quad$ on \mathbb{C}^{n}
(also on any Kähler manifold).
Ex: $\quad \psi=\frac{1}{p!} \omega^{p}$

Reese and I went on a search for other such forms.

Ex: $\quad \psi=\omega=\sum_{k=1}^{n} \frac{i}{2} d z_{k} \wedge d \bar{z}_{k} \quad$ on \mathbb{C}^{n}
(also on any Kähler manifold).
Ex: $\quad \psi=\frac{1}{p!} \omega^{p}$

Reese and I went on a search for other such forms.

Some Nice Cases

Constant coefficient forms in \mathbb{R}^{n}

Ex: $\quad \psi=\omega=\sum_{k=1}^{n} \frac{i}{2} d z_{k} \wedge d \bar{z}_{k} \quad$ on \mathbb{C}^{n}
(also on any Kähler manifold).
Ex: $\quad \psi=\frac{1}{p!} \omega^{p}$

Reese and I went on a search for other such forms.

Some Nice Cases

Constant coefficient forms in \mathbb{R}^{n}
Parallel forms on Riemannian manifolds

We Found:

Special Lagrangian in \mathbb{C}^{n} or on Calabi-Yau manifolds

We Found:

Special Lagrangian in \mathbb{C}^{n} or on Calabi-Yau manifolds
Associative and Coassociative Φ and $* \Phi$ on $\operatorname{Im} \mathbb{O}=\mathbb{R}^{7}$ or on G_{2}-manifolds.

We Found:

Special Lagrangian in \mathbb{C}^{n} or on Calabi-Yau manifolds
Associative and Coassociative Φ and $* \Phi$ on $\operatorname{Im} \mathbb{O}=\mathbb{R}^{7}$ or on G_{2}-manifolds.
Cayley calibration Θ on $\mathbb{O}=\mathbb{R}^{8}$ or on Spin_{7}-manifolds.

We Found:

Special Lagrangian in \mathbb{C}^{n} or on Calabi-Yau manifolds
Associative and Coassociative Φ and $* \Phi$ on $\operatorname{Im} \mathbb{O}=\mathbb{R}^{7}$ or on G_{2}-manifolds.
Cayley calibration Θ on $\mathbb{O}=\mathbb{R}^{8}$ or on Spin $_{7}$-manifolds.

QUESTION:

Are there analogues of holomorphic or pluriharmonic functions on such manifolds?

ANSWER: NO.

ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC FUNCTIONS!

ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC FUNCTIONS!

$$
G \equiv G(\Psi) \subset \operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)
$$

Def. A C^{2}-function f is G-plurisubharmonic if at each point in its domain

$$
\operatorname{tr}\left\{\left.D^{2} f\right|_{P}\right\} \geq 0 \quad \forall P \in G
$$

ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC FUNCTIONS!

$$
G \equiv G(\Psi) \subset \operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)
$$

Def. A C^{2}-function f is G-plurisubharmonic if at each point in its domain

$$
\operatorname{tr}\left\{\left.D^{2} f\right|_{P}\right\} \geq 0 \quad \forall P \in G
$$

or equivalently

$$
D^{2} f \in F(G)
$$

ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC FUNCTIONS!

$$
G \equiv G(\Psi) \subset \operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)
$$

Def. A C^{2}-function f is G-plurisubharmonic if at each point in its domain

$$
\operatorname{tr}\left\{\left.D^{2} f\right|_{P}\right\} \geq 0 \quad \forall P \in G
$$

or equivalently

$$
\begin{gathered}
D^{2} f \in F(G) \\
F(G) \equiv\left\{A \in \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right): \operatorname{tr}\left\{\left.A\right|_{p}\right\} \geq 0 \forall P \in G\right\}
\end{gathered}
$$

Def. An upper semi-continuous function u on $\Omega^{\text {open }} \subset \mathbb{R}^{n}$ is G-psh if

$\left.u\right|_{P}$ is subharmonic for all affine G-planes P

Def. An upper semi-continuous function u on $\Omega^{\text {open }} \subset \mathbb{R}^{n}$ is G-psh if
$\left.u\right|_{P}$ is subharmonic for all affine G-planes P
or

Equivalent Definition (Viscosity Theory).

Def. An upper semi-continuous function u on $\Omega^{\text {open }} \subset \mathbb{R}^{n}$ is G-psh if $\left.u\right|_{P}$ is subharmonic for all affine G-planes P or

Equivalent Definition (Viscosity Theory). A test function for u at $x \in \Omega$ is a C^{2}-function φ defined near x such that

$$
\varphi \geq u \quad \text { and } \quad \varphi(x)=u(x)
$$

Def. An upper semi-continuous function u on $\Omega^{\text {open }} \subset \mathbb{R}^{n}$ is G-psh if
$\left.u\right|_{P}$ is subharmonic for all affine G-planes P
or
Equivalent Definition (Viscosity Theory). A test function for u at $x \in \Omega$ is a C^{2}-function φ defined near x such that

$$
\varphi \geq u \quad \text { and } \quad \varphi(x)=u(x)
$$

Then u is G-psh if for each test function φ at a point $x \in \Omega$

$$
D^{2} \varphi(x) \in F(G) .
$$

Def. An upper semi-continuous function u on $\Omega^{\text {open }} \subset \mathbb{R}^{n}$ is G-psh if $\left.u\right|_{P}$ is subharmonic for all affine G-planes P or

Equivalent Definition (Viscosity Theory). A test function for u at $x \in \Omega$ is a C^{2}-function φ defined near x such that

$$
\varphi \geq u \quad \text { and } \quad \varphi(x)=u(x)
$$

Then u is G-psh if for each test function φ at a point $x \in \Omega$

$$
D^{2} \varphi(x) \in F(G) .
$$

(If there does not exist a test function at x, this is automatically satisfied.)

Def. An upper semi-continuous function u on $\Omega^{\text {open }} \subset \mathbb{R}^{n}$ is G-psh if $\left.u\right|_{P}$ is subharmonic for all affine G-planes P or

Equivalent Definition (Viscosity Theory). A test function for u at $x \in \Omega$ is a C^{2}-function φ defined near x such that

$$
\varphi \geq u \quad \text { and } \quad \varphi(x)=u(x)
$$

Then u is G-psh if for each test function φ at a point $x \in \Omega$

$$
D^{2} \varphi(x) \in F(G) .
$$

(If there does not exist a test function at x, this is automatically satisfied.)

$$
\text { (} \Leftarrow \text { uses our Restriction Theorem) }
$$

In fact, the set $\operatorname{PSH}(G)$ of G-psh functions on Ω gives us a "G-POTENTIAL"OR "G-PLURIPOTENTIAL" THEORY

In fact, the set $\operatorname{PSH}(G)$ of G-psh functions on Ω gives us a
"G-POTENTIAL"OR "G-PLURIPOTENTIAL" THEORY
$\operatorname{PSH}(G)$ has many of the standard properties of subharmonic or plurisubharmonic functions.

In fact, the set $\operatorname{PSH}(G)$ of G-psh functions on Ω gives us a
"G-POTENTIAL" OR "G-PLURIPOTENTIAL" THEORY
$\operatorname{PSH}(G)$ has many of the standard properties of subharmonic or plurisubharmonic functions.
$\operatorname{PSH}(G)$ is a convex cone.
$\operatorname{PSH}(G)$ is closed under:

- decreasing limits
- uniform limits
- taking the maximum of two functions
- taking the USC-regularization of the upper envelope
of a locally bounded family of functions

A MAIN POINT: Theorems in potential theory or pluripotential theory lead to natural conjectures in G-potential theory

A MAIN POINT: Theorems in potential theory or pluripotential theory lead to natural conjectures in G-potential theory

Some Examples:

$$
\begin{gathered}
\text { 1. G-convex hull of } K \subset \Omega \text { is } \\
\widehat{K} \equiv\left\{x \in \Omega: u(x) \leq \sup _{K} u \quad \forall u \in \operatorname{PSH}(G)\right\}
\end{gathered}
$$

Def. Ω is G-convex if $K \subset \subset \Omega \Rightarrow \widehat{K} \subset \subset \Omega$
Thm. Ω is G-convex $\Rightarrow \exists$ a G-psh exhaustion of Ω.

A MAIN POINT: Theorems in potential theory or pluripotential theory lead to natural conjectures in G-potential theory

Some Examples:

$$
\begin{aligned}
& \text { 1. G-convex hull of } K \subset \Omega \text { is } \\
& \widehat{K} \equiv\left\{x \in \Omega: u(x) \leq \sup _{K} u \quad \forall u \in \operatorname{PSH}(G)\right\}
\end{aligned}
$$

Def. Ω is G-convex if $K \subset \subset \Omega \Rightarrow \widehat{K} \subset \subset \Omega$
Thm. Ω is G-convex $\Rightarrow \exists$ a G-psh exhaustion of Ω.
2. G-convexity of hypersurfaces

A MAIN POINT: Theorems in potential theory or pluripotential theory lead to natural conjectures in G-potential theory

Some Examples:

$$
\begin{aligned}
& \text { 1. G-convex hull of } K \subset \Omega \text { is } \\
& \widehat{K} \equiv\left\{x \in \Omega: u(x) \leq \sup _{K} u \quad \forall u \in \operatorname{PSH}(G)\right\}
\end{aligned}
$$

Def. Ω is G-convex if $K \subset \subset \Omega \Rightarrow \widehat{K} \subset \subset \Omega$
Thm. Ω is G-convex $\Rightarrow \exists$ a G-psh exhaustion of Ω.
2. G-convexity of hypersurfaces
3. Andreotti-Frankel type theorems

A MAIN POINT: Theorems in potential theory or pluripotential theory lead to natural conjectures in G-potential theory

Some Examples:

$$
\begin{gathered}
\text { 1. G-convex hull of } K \subset \Omega \text { is } \\
\widehat{K} \equiv\left\{x \in \Omega: u(x) \leq \sup _{K} u \quad \forall u \in \operatorname{PSH}(G)\right\}
\end{gathered}
$$

Def. Ω is G-convex if $K \subset \subset \Omega \Rightarrow \widehat{K} \subset \subset \Omega$
Thm. Ω is G-convex $\Rightarrow \exists$ a G-psh exhaustion of Ω.
2. G-convexity of hypersurfaces
3. Andreotti-Frankel type theorems
4. Totally real submanifolds and Grauert's Theorem

A MAIN POINT: Theorems in potential theory or pluripotential theory lead to natural conjectures in G-potential theory

Some Examples:

$$
\begin{gathered}
\text { 1. G-convex hull of } K \subset \Omega \text { is } \\
\widehat{K} \equiv\left\{x \in \Omega: u(x) \leq \sup _{K} u \quad \forall u \in \operatorname{PSH}(G)\right\}
\end{gathered}
$$

Def. Ω is G-convex if $K \subset \subset \Omega \Rightarrow \widehat{K} \subset \subset \Omega$
Thm. Ω is G-convex $\Rightarrow \exists$ a G-psh exhaustion of Ω.
2. G-convexity of hypersurfaces
3. Andreotti-Frankel type theorems
4. Totally real submanifolds and Grauert's Theorem
5. The Dirichlet Problem
$F(G)$ is a convex cone, with 0 as vertex, which contains

$$
\mathcal{P} \equiv\{A \geq 0\}
$$

$F(G)$ is a convex cone, with 0 as vertex, which contains

$$
\begin{gathered}
\mathcal{P} \equiv\{A \geq 0\}, \text { i.e., } \\
\mathcal{P} \subset F(G) \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

$F(G)$ is a convex cone, with 0 as vertex, which contains

$$
\begin{gathered}
\mathcal{P} \equiv\{A \geq 0\} \text {, i.e., } \\
\mathcal{P} \subset F(G) \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)
\end{gathered}
$$

MAJOR POINT

$\partial F(G)$ can be viewed as a differential equation

We solved the Dirichlet problem for this equation on any domain Ω with strictly G-convex boundary for all continuous boundary values $\varphi \in C(\partial \Omega)$

We solved the Dirichlet problem for this equation on any domain Ω with strictly G-convex boundary for all continuous boundary values $\varphi \in C(\partial \Omega)$

The solutions are called G-harmonic.
$\partial \Omega$ is strictly G-convex $\Longleftrightarrow \quad \forall$-planes $P \subset T(\partial \Omega), \operatorname{tr}\left\{\left.\mathrm{II}\right|_{P}\right\}>0$

We solved the Dirichlet problem for this equation on any domain Ω with strictly G-convex boundary for all continuous boundary values $\varphi \in C(\partial \Omega)$

The solutions are called G-harmonic.
$\partial \Omega$ is strictly G-convex $\Longleftrightarrow \forall G$-planes $P \subset T(\partial \Omega), \operatorname{tr}\left\{\left.\mathrm{II}\right|_{P}\right\}>0$

Interestingly, for ψ the Associative, Coassociative or Caley calibration, there appears to be no polynomial function Q on $\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ with

$$
\partial F\{G(\Psi)\} \subset \operatorname{Zeros}(Q)
$$

We solved the Dirichlet problem for this equation on any domain Ω with strictly G-convex boundary for all continuous boundary values $\varphi \in C(\partial \Omega)$

The solutions are called G-harmonic.
$\partial \Omega$ is strictly G-convex $\Longleftrightarrow \forall G$-planes $P \subset T(\partial \Omega), \operatorname{tr}\left\{\left.\mathrm{II}\right|_{P}\right\}>0$

Interestingly, for ψ the Associative, Coassociative or Caley calibration, there appears to be no polynomial function Q on $\operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ with

$$
\partial F\{G(\Psi)\} \subset \operatorname{Zeros}(Q)
$$

So there is no classical differential operator for this equation.

We realized that this approach was much more general.
Let $\mathbb{G} \subset \operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$ be any closed set.
Then the whole discussion holds for $F(\mathbb{G})$

We realized that this approach was much more general.
Let $\mathbb{G} \subset \operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$ be any closed set.
Then the whole discussion holds for $F(\mathbb{G})$
(\mathbb{G} could be a Cantor-type set, a finite set, etc.)

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\} \geq 0 \quad \forall p$-planes P at all points x

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{p}\right\} \geq 0 \quad \forall p$-planes P at all points x u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\}=0 \quad$ for some P at each x

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{p}\right\} \geq 0 \quad \forall p$-planes P at all points x u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\}=0 \quad$ for some P at each x

$$
\Longleftrightarrow \quad \prod_{i_{1}<\cdots<i_{p}}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right) \equiv Q(u)=0
$$

Q is the p-fold sum operator.

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\} \geq 0 \quad \forall p$-planes P at all points x u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\}=0 \quad$ for some P at each x

$$
\Longleftrightarrow \quad \prod_{i_{1}<\cdots<i_{\rho}}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{\rho}}\right) \equiv Q(u)=0
$$

Q is the p-fold sum operator.

For $p=1$ this is the Monge-Ampère operator.

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\} \geq 0 \quad \forall p$-planes P at all points x u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\}=0 \quad$ for some P at each x

$$
\Longleftrightarrow \quad \prod_{i_{1}<\cdots<i_{p}}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right) \equiv Q(u)=0
$$

Q is the p-fold sum operator.

For $p=1$ this is the Monge-Ampère operator. The potential theory is very interesting.

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\} \geq 0 \quad \forall p$-planes P at all points x u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\}=0 \quad$ for some P at each x

$$
\Longleftrightarrow \quad \prod_{i_{1}<\cdots<i_{\rho}}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{\rho}}\right) \equiv Q(u)=0
$$

Q is the p-fold sum operator.

For $p=1$ this is the Monge-Ampère operator.
The potential theory is very interesting.
Note that $\widetilde{Q} \equiv$ the minimal $\lambda_{i_{1}}+\cdots+\lambda_{i_{\rho}}$ (the truncated Laplacian) is an alternative operator for this potential theory.

Important Example. $\mathbb{G}=\operatorname{Grass}_{p}\left(\mathbb{R}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\} \geq 0 \quad \forall p$-planes P at all points x u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.\left(D^{2} u\right)_{x}\right|_{P}\right\}=0 \quad$ for some P at each x

$$
\Longleftrightarrow \quad \prod_{i_{1}<\cdots<i_{\rho}}\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}}\right) \equiv Q(u)=0
$$

Q is the p-fold sum operator.

For $p=1$ this is the Monge-Ampère operator.
The potential theory is very interesting.
Note that $\widetilde{Q} \equiv$ the minimal $\lambda_{i_{1}}+\cdots+\lambda_{i_{\rho}}$ (the truncated Laplacian) is an alternative operator for this potential theory.
(Here u is C^{2})

Important Example. $\mathbb{G}=L A G \subset \operatorname{Grass}_{n}\left(\mathbb{C}^{n}\right)$

Important Example. $\mathbb{G}=L A G \subset \operatorname{Grass}_{n}\left(\mathbb{C}^{n}\right)$

u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.D^{2} u\right|_{P}\right\} \geq 0 \quad \forall$ Lagrangian P

Important Example. $\mathbb{G}=L A G \subset \operatorname{Grass}_{n}\left(\mathbb{C}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.D^{2} u\right|_{P}\right\} \geq 0 \quad \forall$ Lagrangian P
u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.D^{2} u\right|_{P}\right\}=0 \quad$ for some P at each x

Important Example. $\mathbb{G}=L A G \subset \operatorname{Grass}_{n}\left(\mathbb{C}^{n}\right)$
u is \mathbb{G}-subharmonic $\Longleftrightarrow \operatorname{tr}\left\{\left.D^{2} u\right|_{P}\right\} \geq 0 \quad \forall$ Lagrangian P
u is \mathbb{G}-harmonic \Longleftrightarrow in addition $\operatorname{tr}\left\{\left.D^{2} u\right|_{P}\right\}=0 \quad$ for some P at each x
\Longleftrightarrow A Lagrangian Monge-Ampère operator vanishes.

$$
\left(u \text { is } C^{2} .\right)
$$

Subequations and Duality Theory

Definition. A subequation is a closed subset $F \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ s.t.

$$
F+\mathcal{P} \subset F
$$

Subequations and Duality Theory

Definition. A subequation is a closed subset $F \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ s.t.

$$
F+\mathcal{P} \subset F
$$

Definition. The dual subequation is

$$
\tilde{F}=-(\sim \operatorname{Int} F)=\sim(-\operatorname{Int} F)
$$

Subequations and Duality Theory

Definition. A subequation is a closed subset $F \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ s.t.

$$
F+\mathcal{P} \subset F
$$

Definition. The dual subequation is

$$
\begin{gathered}
\widetilde{F}=-(\sim \operatorname{Int} F)=\sim(-\operatorname{Int} F) \\
\widetilde{\widetilde{F}}=F
\end{gathered}
$$

Subequations and Duality Theory

Definition. A subequation is a closed subset $F \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ s.t.

$$
F+\mathcal{P} \subset F
$$

Definition. The dual subequation is

$$
\begin{gathered}
\widetilde{F}=-(\sim \operatorname{Int} F)=\sim(-\operatorname{Int} F) \\
\widetilde{\widetilde{F}}=F \\
F+\mathcal{P} \subset F \stackrel{(}{F}+\mathcal{P} \subset \widetilde{F}
\end{gathered}
$$

Subequations and Duality Theory

Definition. A subequation is a closed subset $F \subset \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)$ s.t.

$$
F+\mathcal{P} \subset F
$$

Definition. The dual subequation is

$$
\begin{gathered}
\widetilde{F}=-(\sim \operatorname{Int} F)=\sim(-\operatorname{Int} F) \\
\widetilde{\widetilde{F}}=F \\
F+\mathcal{P} \subset F \stackrel{(}{F}+\mathcal{P} \subset \widetilde{F}
\end{gathered}
$$

Definition. An u.s.c. function u is F-subharmonic

if for every test function φ at a point x for u

$$
\left(D^{2} \varphi\right)_{x} \in F
$$

Definition. An u.s.c. function u is F-subharmonic

if for every test function φ at a point x for u

$$
\left(D^{2} \varphi\right)_{x} \in F
$$

Definition. An function u is F-harmonic if
u is F-subharmonic and $-u$ is \widetilde{F}-subharmonic.

Definition. An u.s.c. function u is F-subharmonic

if for every test function φ at a point x for u

$$
\left(D^{2} \varphi\right)_{x} \in F
$$

Definition. An function u is F-harmonic if
u is F-subharmonic and $-u$ is \tilde{F}-subharmonic.
u is C^{2} and F-harmonic $\Rightarrow\left(D^{2} u\right)_{x} \in \partial F \quad \forall x$

Note: F-subharmonics give a Potential Theory

Note: F-subharmonics give a Potential Theory

Note: There may be many operators Q with $\partial F \subset\{Q=0\}$.

$$
\begin{aligned}
u \text { is } F \text {-subharmonic } & \Longleftrightarrow u \text { is a subsolution } \\
-u \text { is } \tilde{F} \text {-subharmonic } & \Longleftrightarrow u \text { is a supersolution }
\end{aligned}
$$

$$
\begin{aligned}
u \text { is } F \text {-subharmonic } & \Longleftrightarrow u \text { is a subsolution } \\
-u \text { is } \widetilde{F} \text {-subharmonic } & \Longleftrightarrow u \text { is a supersolution }
\end{aligned}
$$

Definition. $\vec{F}=$ all rays from 0 which are eventually in F.
u is F-subharmonic $\quad \Longleftrightarrow u$ is a subsolution
$-u$ is \widetilde{F}-subharmonic $\Longleftrightarrow u$ is a supersolution
Definition. $\vec{F}=$ all rays from 0 which are eventually in F.
Definition. $\partial \Omega$ is strictly \vec{F} convex if at each $x \in \partial \Omega$

$$
\mathrm{II}_{x}=\left.B\right|_{T_{x}(\partial \Omega)} \text { for some } B \in \operatorname{Int} \vec{F} .
$$

$$
\begin{aligned}
u \text { is } F \text {-subharmonic } & \Longleftrightarrow u \text { is a subsolution } \\
-u \text { is } \widetilde{F} \text {-subharmonic } & \Longleftrightarrow u \text { is a supersolution }
\end{aligned}
$$

Definition. $\vec{F}=$ all rays from 0 which are eventually in F. Definition. $\partial \Omega$ is strictly \vec{F} convex if at each $x \in \partial \Omega$

$$
\mathrm{II}_{x}=\left.B\right|_{T_{x}(\partial \Omega)} \text { for some } B \in \operatorname{Int} \vec{F}
$$

THEOREM. (The Dirichlet Problem) Let $\Omega \subset \subset \mathbb{R}^{n}$ be a domain with smooth boundary $\partial \Omega$ which is both \vec{F} and \vec{F} strictly convex.

$$
\begin{aligned}
u \text { is } F \text {-subharmonic } & \Longleftrightarrow u \text { is a subsolution } \\
-u \text { is } \tilde{F} \text {-subharmonic } & \Longleftrightarrow u \text { is a supersolution }
\end{aligned}
$$

Definition. $\vec{F}=$ all rays from 0 which are eventually in F.
Definition. $\partial \Omega$ is strictly \vec{F} convex if at each $x \in \partial \Omega$

$$
\mathrm{II}_{x}=\left.B\right|_{T_{x}(\partial \Omega)} \text { for some } B \in \operatorname{Int} \vec{F}
$$

THEOREM. (The Dirichlet Problem) Let $\Omega \subset \subset \mathbb{R}^{n}$ be a domain with smooth boundary $\partial \Omega$ which is both \vec{F} and \vec{F} strictly convex. Then for each $\varphi \in C(\partial \Omega)$
there exists a unique F-harmonic function u on Ω, with a continuous extension to $\bar{\Omega}$ satisfying

$$
\left.u\right|_{\partial \Omega}=\varphi
$$

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry.

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry. In fact, any Gårding-Dirichlet polynomial operator $\mathfrak{g}\left(D^{2} u\right)$.

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry. In fact, any Gårding-Dirichlet polynomial operator $\mathfrak{g}\left(D^{2} u\right)$.
Branches of the homogeneous equations above.

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry. In fact, any Gårding-Dirichlet polynomial operator $\mathfrak{g}\left(D^{2} u\right)$.
Branches of the homogeneous equations above.
For example, for Monge-Ampère,

$$
\lambda_{k}=0
$$

where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the ev's of the Hessian

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry. In fact, any Gårding-Dirichlet polynomial operator $\mathfrak{g}\left(D^{2} u\right)$.
Branches of the homogeneous equations above.
For example, for Monge-Ampère, $\lambda_{k}=0$
where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the ev's of the Hessian
The special Lagrangian potential equation with constant RHS.

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry. In fact, any Gårding-Dirichlet polynomial operator $\mathfrak{g}\left(D^{2} u\right)$.
Branches of the homogeneous equations above.
For example, for Monge-Ampère,

$$
\lambda_{k}=0
$$

where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the ev's of the Hessian
The special Lagrangian potential equation with constant RHS.
functions of the principal curvatures of the graph

Examples: For the following operators Q
Int $F=$ the connected component containing $/$ of $\{A: Q(A)>0\}$, or the subset of this where $Q(A) \geq c>0$

Monge-Ampère equations over \mathbb{R}, \mathbb{C} or \mathbb{H}.
Any $\sigma_{k}\left(D^{2} u\right)$ over \mathbb{R}, \mathbb{C} or \mathbb{H}.
The examples above from p-convex geometry and Lagrangian geometry. In fact, any Gårding-Dirichlet polynomial operator $\mathfrak{g}\left(D^{2} u\right)$.
Branches of the homogeneous equations above.
For example, for Monge-Ampère,

$$
\lambda_{k}=0
$$

where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the ev's of the Hessian
The special Lagrangian potential equation with constant RHS. functions of the principal curvatures of the graph

Many many equations with no smooth operator

Incidentally, For the first four classes of operators mentioned above, there was a remarkable paper by

Bin Guo, Duong H. Phong, and Freid Tong
Annals of Math. 198 (2023), 393-418
which established L^{∞}-estimates for these operators in complex geometry.

Incidentally, For the first four classes of operators mentioned above, there was a remarkable paper by

Bin Guo, Duong H. Phong, and Freid Tong
Annals of Math. 198 (2023), 393-418
which established L^{∞}-estimates for these operators in complex geometry.
It was based on a fundamental new idea of Chen and Cheng in their ground-breaking work
Xiuxong Chen and Jungrui Cheng,
J. Amer. Math. Soc. 34 no. 4 (2021), 909-1009

Incidentally, For the first four classes of operators mentioned above, there was a remarkable paper by

Bin Guo, Duong H. Phong, and Freid Tong
Annals of Math. 198 (2023), 393-418

which established L^{∞}-estimates for these operators in complex geometry.
It was based on a fundamental new idea of Chen and Cheng in their ground-breaking work
Xiuxong Chen and Jungrui Cheng,
J. Amer. Math. Soc. 34 no. 4 (2021), 909-1009
[GPT] gave a purely PDE proof of the Yau's Theorem on the Calabi Conjecture.

Incidentally, For the first four classes of operators mentioned above, there was a remarkable paper by

Bin Guo, Duong H. Phong, and Freid Tong
Annals of Math. 198 (2023), 393-418

which established L^{∞}-estimates for these operators in complex geometry.
It was based on a fundamental new idea of Chen and Cheng in their ground-breaking work
Xiuxong Chen and Jungrui Cheng,
J. Amer. Math. Soc. 34 no. 4 (2021), 909-1009
[GPT] gave a purely PDE proof of the Yau's Theorem on the Calabi Conjecture.

It has also engendered very much research recently not a little part of it by Phong in collaboration with others, particularly Bin Guo.

A Much More General Theory

A Much More General Theory

X a manifold
$J^{2}(X) \longrightarrow X=$ the bundle of 2-jets of functions

A Much More General Theory

\[

\]

A Much More General Theory

X a manifold

$J^{2}(X) \longrightarrow X=$ the bundle of 2-jets of functions
$=$ the bundle of Taylor polynomials of degree 2
$=\mathbb{R} \oplus J_{\text {red }}^{2}(X)$

A Much More General Theory

X a manifold

$J^{2}(X) \longrightarrow X=$ the bundle of 2-jets of functions
$=$ the bundle of Taylor polynomials of degree 2
$=\mathbb{R} \oplus J_{\text {red }}^{2}(X)$
$=\mathbb{R} \oplus T^{*} X \oplus \operatorname{Sym}^{2}\left(T^{*} X\right) \quad$ if riemannian

A Much More General Theory

X a manifold

$J^{2}(X) \longrightarrow X=$ the bundle of 2-jets of functions
$=$ the bundle of Taylor polynomials of degree 2
$=\mathbb{R} \oplus J_{\text {red }}^{2}(X)$
$=\mathbb{R} \oplus T^{*} X \oplus \operatorname{Sym}^{2}\left(T^{*} X\right) \quad$ if riemannian

In local coordinate neighborhood U

$$
J^{2}(U)=\mathbb{R} \oplus \mathbb{R}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)
$$

A Much More General Theory

X a manifold

$J^{2}(X) \longrightarrow X=$ the bundle of 2-jets of functions
$=$ the bundle of Taylor polynomials of degree 2
$=\mathbb{R} \oplus J_{\text {red }}^{2}(X)$
$=\mathbb{R} \oplus T^{*} X \oplus \operatorname{Sym}^{2}\left(T^{*} X\right) \quad$ if riemannian
In local coordinate neighborhood U

$$
\begin{gathered}
J^{2}(U)=\mathbb{R} \oplus \mathbb{R}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right) \\
J^{2} \varphi(x)=\left(\varphi(x), D \varphi(x), D^{2} \varphi(x)\right)
\end{gathered}
$$

Definition. A subequation is a closed subset

$$
F \subset J^{2}(X)
$$

s.t.
(1) $F+\mathcal{P} \subset F$
where $\mathcal{P} \equiv 2$-jets of functions with minimum value zero at x

Definition. A subequation is a closed subset

$$
F \subset J^{2}(X)
$$

s.t.
(1) $F+\mathcal{P} \subset F$
where $\mathcal{P} \equiv 2$-jets of functions with minimum value zero at x
(2) $F+\mathcal{N} \subset F$
where $\mathcal{N} \equiv 2$-jets of $\varphi \equiv$ constant ≤ 0

Definition. A subequation is a closed subset

$$
F \subset J^{2}(X)
$$

s.t.
(1) $F+\mathcal{P} \subset F$
where $\mathcal{P} \equiv 2$-jets of functions with minimum value zero at x
(2) $F+\mathcal{N} \subset F$
where $\mathcal{N} \equiv 2$-jets of $\varphi \equiv$ constant ≤ 0

Plus mild topological conditions which hold in all interesting cases.

As before

$$
\widetilde{F}=-(\sim \operatorname{Int} F)
$$

As before

$$
\widetilde{F}=-(\sim \operatorname{Int} F)
$$

Definition. $u \in \operatorname{USC}(X)$ is F-subharmonic if
\forall test functions φ at a point $x, J_{x}^{2}(\varphi) \in F_{X}$

As before

$$
\widetilde{F}=-(\sim \operatorname{Int} F)
$$

Definition. $u \in \operatorname{USC}(X)$ is F-subharmonic if
\forall test functions φ at a point $x, J_{x}^{2}(\varphi) \in F_{X}$

Definition. u is F-harmonic if

$$
u \text { is } F \text {-subharmonic } \quad \text { and } \quad-u \text { is } \widetilde{F} \text {-subharmonic }
$$

As before

$$
\widetilde{F}=-(\sim \operatorname{Int} F)
$$

Definition. $u \in \operatorname{USC}(X)$ is F-subharmonic if

$$
\forall \text { test functions } \varphi \text { at a point } x, J_{x}^{2}(\varphi) \in F_{x}
$$

Definition. u is F-harmonic if

$$
u \text { is } F \text {-subharmonic } \quad \text { and } \quad-u \text { is } \widetilde{F} \text {-subharmonic }
$$

Again there is an F potential theory.

THE MONOTONICITY METHOD

THE MONOTONICITY METHOD

A Monotonicity Cone is a convex cone subequation $M \subset J^{2}(X)$ s.t.

$$
F+M \subset F
$$

THE MONOTONICITY METHOD

A Monotonicity Cone is a convex cone subequation $M \subset J^{2}(X)$ s.t.

$$
F+M \subset F
$$

which is equivalent to

$$
F+\widetilde{F} \subset \widetilde{M}
$$

THE MONOTONICITY METHOD

A Monotonicity Cone is a convex cone subequation $M \subset J^{2}(X)$ s.t.

$$
F+M \subset F
$$

which is equivalent to

$$
F+\widetilde{F} \subset \widetilde{M}
$$

This is involved in establishing comparison.

THE MONOTONICITY METHOD

A Monotonicity Cone is a convex cone subequation $M \subset J^{2}(X)$ s.t.

$$
F+M \subset F
$$

which is equivalent to

$$
F+\widetilde{F} \subset \widetilde{M}
$$

This is involved in establishing comparison.
If u is F-sub and $-v$ is \widetilde{F}-sub, the function $u-v$ satisfies the the Zero Maximum Principle, i.e.,

$$
u-v \leq 0 \text { on } \partial \Omega \Rightarrow u-v \leq 0 \text { on } \Omega .
$$

To prove the Dirichlet Problem for a domain $\Omega \subset X$ on a manifold we require the existence of a global strictly M-subharmonic C^{2}-function on $\bar{\Omega}$.

To prove the Dirichlet Problem for a domain $\Omega \subset X$ on a manifold we require the existence of a global strictly M-subharmonic C^{2}-function on $\bar{\Omega}$.

It is clear that one need something of this sort to give control over Ω. Just giving the boundary values and the strict boundary convexity is not enough!

To prove the Dirichlet Problem for a domain $\Omega \subset X$ on a manifold we require the existence of a global strictly M-subharmonic C^{2}-function on $\bar{\Omega}$.

It is clear that one need something of this sort to give control over Ω. Just giving the boundary values and the strict boundary convexity is not enough!

This is the only global assumption. It provides an important approximation.

To prove the Dirichlet Problem for a domain $\Omega \subset X$ on a manifold we require the existence of a global strictly M-subharmonic C^{2}-function on $\bar{\Omega}$.

It is clear that one need something of this sort to give control over Ω. Just giving the boundary values and the strict boundary convexity is not enough!

This is the only global assumption. It provides an important approximation.

For pure second order subequations \mathcal{P} (also $\mathcal{P}_{\mathbb{C}}, \mathcal{P}_{\mathbb{H}}$ in those cases) is always a monotonicity cone.

To prove the Dirichlet Problem for a domain $\Omega \subset X$ on a manifold we require the existence of a global strictly M-subharmonic C^{2}-function on $\bar{\Omega}$.

It is clear that one need something of this sort to give control over Ω. Just giving the boundary values and the strict boundary convexity is not enough!

This is the only global assumption. It provides an important approximation.

For pure second order subequations \mathcal{P} (also $\mathcal{P}_{\mathbb{C}}, \mathcal{P}_{\mathbb{H}}$ in those cases) is always a monotonicity cone.

In the classical complex case, this plus strict boundary convexity, implies that Ω is Stein.

Any $O(n)$ invariant subequation

$$
F_{0} \subset J_{0}^{2}\left(\mathbb{R}^{n}\right)=\mathbb{R} \oplus \mathbb{R}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)
$$

gives a subequation on every riemannian manifold.

Any $O(n)$ invariant subequation

$$
F_{0} \subset J_{0}^{2}\left(\mathbb{R}^{n}\right)=\mathbb{R} \oplus \mathbb{R}^{n} \oplus \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)
$$

gives a subequation on every riemannian manifold.

One of Many Results

THEOREM. Let F be such a subequation. Suppose there exists a strictly M-subharmonic function on X where M is a monotonicity cone for F.

Then for every domain $\Omega \subset \subset X$ whose boundary is strictly F and \widetilde{F} convex, both existence and uniqueness for the Dirichlet Problem for F-harmonics holds for all $\varphi \in C(\partial \Omega)$.

Suppose $F_{0} \subset J_{0}^{2}\left(\mathbb{R}^{n}\right)$ is a G-invariant subeqn for a compact Lie group G.

Suppose $F_{0} \subset J_{0}^{2}\left(\mathbb{R}^{n}\right)$ is a G-invariant subeqn for a compact Lie group G. Then F_{0} defines a subequation on every manifold with a topological reduction of it structure group to G
(Cover by tangent frames with transition functions valued in G.)

Suppose $F_{0} \subset J_{0}^{2}\left(\mathbb{R}^{n}\right)$ is a G-invariant subeqn for a compact Lie group G. Then F_{0} defines a subequation on every manifold with a topological reduction of it structure group to G
(Cover by tangent frames with transition functions valued in G.)

The Same Theorem holds in this case.

We were also able to prove the inhomogeneous Dirichlet Problem
for the complex Monge-Ampère equation on almost complex manifolds with $\mathrm{RHS} \geq 0$.

FOR THE PROOF

Recall that we want comparison.
If u is F-sub and $-v$ is \widetilde{F}-sub, the function $u-v$ satisfies the the Zero Maximum Principle, i.e.,

$$
u-v \leq 0 \text { on } \partial \Omega \Rightarrow u-v \leq 0 \text { on } \Omega .
$$

FOR THE PROOF

Recall that we want comparison.
If u is F-sub and $-v$ is \widetilde{F}-sub, the function $u-v$ satisfies the the Zero Maximum Principle, i.e.,

$$
u-v \leq 0 \text { on } \partial \Omega \Rightarrow u-v \leq 0 \text { on } \Omega .
$$

Assume that the monotonicity assumption holds

FOR THE PROOF

Recall that we want comparison.
If u is F-sub and $-v$ is \widetilde{F}-sub, the function $u-v$ satisfies the the Zero Maximum Principle, i.e.,

$$
u-v \leq 0 \text { on } \partial \Omega \Rightarrow u-v \leq 0 \text { on } \Omega \text {. }
$$

Assume that the monotonicity assumption holds

Then we found the hypothesis of weak comparison: u is F_{c}-sub for $c>0$ and $-v$ is \widetilde{F}-sub, where

$$
F_{c} \equiv\{A \in F: \operatorname{dist}(A, \partial F) \geq c\} .
$$

(or the opposite)

FOR THE PROOF

Recall that we want comparison.
If u is F-sub and $-v$ is \widetilde{F}-sub, the function $u-v$ satisfies the the Zero Maximum Principle, i.e.,

$$
u-v \leq 0 \text { on } \partial \Omega \Rightarrow u-v \leq 0 \text { on } \Omega \text {. }
$$

Assume that the monotonicity assumption holds

Then we found the hypothesis of weak comparison: u is F_{c}-sub for $c>0$ and $-v$ is \widetilde{F}-sub, where

$$
F_{c} \equiv\{A \in F: \operatorname{dist}(A, \partial F) \geq c\} .
$$

(or the opposite) which implies comparison.

FOR THE PROOF

Recall that we want comparison.
If u is F-sub and $-v$ is \widetilde{F}-sub, the function $u-v$ satisfies the the Zero Maximum Principle, i.e.,

$$
u-v \leq 0 \text { on } \partial \Omega \Rightarrow u-v \leq 0 \text { on } \Omega \text {. }
$$

Assume that the monotonicity assumption holds

Then we found the hypothesis of weak comparison: u is F_{c}-sub for $c>0$ and $-v$ is \widetilde{F}-sub, where

$$
F_{c} \equiv\{A \in F: \operatorname{dist}(A, \partial F) \geq c\} .
$$

(or the opposite) which implies comparison.
This hypothsis has the property that
LOCAL $\quad \Rightarrow \quad$ GLOBAL

The monotonicity assumption and local weak comparison
$\Rightarrow \quad$ comparison

An Important Technique

AFFINE JET EQUIVALENCE

Given local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on $U^{\text {open }} \subset \mathbb{R}^{n}$

$$
\begin{gathered}
J^{2}(U)=U \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right) \\
J_{x}^{2}(u)=\left(u(x), D_{x} u, D_{x}^{2} u\right)
\end{gathered}
$$

Given local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ on $U^{\text {open }} \subset \mathbb{R}^{n}$

$$
\begin{gathered}
J^{2}(U)=U \times \mathbb{R} \times \mathbb{R}^{n} \times \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right) \\
J_{x}^{2}(u)=\left(u(x), D_{x} u, D_{x}^{2} u\right)
\end{gathered}
$$

An AUTOMORPHISM

$$
\Phi: J^{2}(U) \longrightarrow J^{2}(U)
$$

is given by

$$
\begin{aligned}
& \Phi\left(u, D u, D^{2} u\right)=\left(u, g D u, h\left(D^{2} u\right) h^{t}+L(D u)\right) \\
& g_{x}, h_{x} \in \operatorname{GL}(n) \quad \text { and } \quad L_{x}: \mathbb{R}^{n} \longrightarrow \operatorname{Sym}^{2}\left(\mathbb{R}^{n}\right)
\end{aligned}
$$

- There is an invariant definition which works globally
- There is an invariant definition which works globally
- These form a group
- There is an invariant definition which works globally
- These form a group
- They are radical - they are much more than a change of coordinates.

If u is function, $\Phi\left(J^{2} u\right)$ is essentially never the 2-jet of a function.

- There is an invariant definition which works globally
- These form a group
- They are radical - they are much more than a change of coordinates.

If u is function, $\Phi\left(J^{2} u\right)$ is essentially never the 2-jet of a function.

- Covers the expression of Hess(u) in local coordinates
- There is an invariant definition which works globally
- These form a group
- They are radical - they are much more than a change of coordinates.

If u is function, $\Phi\left(J^{2} u\right)$ is essentially never the 2-jet of a function.

- Covers the expression of Hess(u) in local coordinates

An AFFINE AUTOMORPHISM

$$
\begin{gathered}
\Psi=\Phi+\sigma \\
\Phi \text { an automorphism } \quad \text { and } \quad \sigma \in \Gamma\left(J^{2}(U)\right)
\end{gathered}
$$

- There is an invariant definition which works globally
- These form a group
- They are radical - they are much more than a change of coordinates.

If u is function, $\Phi\left(J^{2} u\right)$ is essentially never the 2-jet of a function.

- Covers the expression of Hess(u) in local coordinates

An AFFINE AUTOMORPHISM

$$
\begin{gathered}
\Psi=\Phi+\sigma \\
\Phi \text { an automorphism } \quad \text { and } \quad \sigma \in \Gamma\left(J^{2}(U)\right)
\end{gathered}
$$

- This can convert homogeneous equations into inhomogeneous equations.

THEOREM. Suppose F is a subequation on X which is locally affinely jet equivalent to a constant coefficient subequation. Then weak comparison holds for F.

THEOREM. Suppose F is a subequation on X which is locally affinely jet equivalent to a constant coefficient subequation. Then weak comparison holds for F.

Weak comparison
and the existence of a strict M subharmonic function
$\Rightarrow \quad$ Comparison holds

THEOREM. Suppose F is a subequation on X which is locally affinely jet equivalent to a constant coefficient subequation. Then weak comparison holds for F.

Weak comparison
 and the existence of a strict M subharmonic function

$\Rightarrow \quad$ Comparison holds
$\Rightarrow \quad$ Uniqueness of solutions to the Dirichlet problem

THEOREM. Suppose F is a subequation on X which is locally affinely jet equivalent to a constant coefficient subequation. Then weak comparison holds for F.

Weak comparison
and the existence of a strict M subharmonic function
$\Rightarrow \quad$ Comparison holds
$\Rightarrow \quad$ Uniqueness of solutions to the Dirichlet problem and, with boundary convexity, solutions to the Dirichlet problem exist.

