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SOME HISTORY

Calibrated Geometries

Let Ψ be an exterior p-form on Rn (or on a riemannian manifold) with

dΨ = 0

Ψ
∣∣
P ≤ d volP for all oriented p-planes P

Define G(Ψ) ≡ {P : Ψ
∣∣
P = d volP}

An oriented p-dimensional submanifold M is calibrated by Ψ if
TxM ∈ G(Ψ) ∀ x ∈ M.

LEMMA. If M is calibrated by Ψ, then M is homologically volume minimizing.

Proof: M ′ another such manifold with ∂M ′ = ∂M (possibly = ∅)
and [M − M ′] = 0 ∈ Hp

vol(M) =
∫

M Ψ =
∫

M′ Ψ ≤ vol(M ′)
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Ex: Ψ = ω =
∑n

k=1
i
2 dzk ∧ dz̄k on Cn

(also on any Kähler manifold).

Ex: Ψ = 1
p!ω

p

Reese and I went on a search for other such forms.

Some Nice Cases

Constant coefficient forms in Rn

Parallel forms on Riemannian manifolds
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We Found:

Special Lagrangian in Cn or on Calabi-Yau manifolds

Associative and Coassociative Φ and ∗Φ on ImO = R7 or on G2-manifolds.

Cayley calibration Θ on O = R8 or on Spin7-manifolds.

QUESTION:

Are there analogues of holomorphic or pluriharmonic functions

on such manifolds?
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ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC
FUNCTIONS!

G ≡ G(Ψ) ⊂ Grassp(Rn)

Def. A C2-function f is G-plurisubharmonic if at each point in its domain

tr
{

D2f
∣∣
P

}
≥ 0 ∀P ∈ G

or equivalently

D2f ∈ F (G)

F (G) ≡ {A ∈ Sym2(Rn) : tr{A
∣∣
P} ≥ 0 ∀P ∈ G}

Blaine Lawson Projective Hulls, Linking, and Relative Hodge Question February 12, 2024 5 / 34



ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC
FUNCTIONS!

G ≡ G(Ψ) ⊂ Grassp(Rn)

Def. A C2-function f is G-plurisubharmonic if at each point in its domain

tr
{

D2f
∣∣
P

}
≥ 0 ∀P ∈ G

or equivalently

D2f ∈ F (G)

F (G) ≡ {A ∈ Sym2(Rn) : tr{A
∣∣
P} ≥ 0 ∀P ∈ G}

Blaine Lawson Projective Hulls, Linking, and Relative Hodge Question February 12, 2024 5 / 34



ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC
FUNCTIONS!

G ≡ G(Ψ) ⊂ Grassp(Rn)

Def. A C2-function f is G-plurisubharmonic if at each point in its domain

tr
{

D2f
∣∣
P

}
≥ 0 ∀P ∈ G

or equivalently

D2f ∈ F (G)

F (G) ≡ {A ∈ Sym2(Rn) : tr{A
∣∣
P} ≥ 0 ∀P ∈ G}

Blaine Lawson Projective Hulls, Linking, and Relative Hodge Question February 12, 2024 5 / 34



ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC
FUNCTIONS!

G ≡ G(Ψ) ⊂ Grassp(Rn)

Def. A C2-function f is G-plurisubharmonic if at each point in its domain

tr
{

D2f
∣∣
P

}
≥ 0 ∀P ∈ G

or equivalently

D2f ∈ F (G)

F (G) ≡ {A ∈ Sym2(Rn) : tr{A
∣∣
P} ≥ 0 ∀P ∈ G}

Blaine Lawson Projective Hulls, Linking, and Relative Hodge Question February 12, 2024 5 / 34



ANSWER: NO.

But there are ALWAYS ANALOGUES OF PLURISUBHARMONIC
FUNCTIONS!

G ≡ G(Ψ) ⊂ Grassp(Rn)

Def. A C2-function f is G-plurisubharmonic if at each point in its domain

tr
{

D2f
∣∣
P

}
≥ 0 ∀P ∈ G

or equivalently

D2f ∈ F (G)

F (G) ≡ {A ∈ Sym2(Rn) : tr{A
∣∣
P} ≥ 0 ∀P ∈ G}

Blaine Lawson Projective Hulls, Linking, and Relative Hodge Question February 12, 2024 5 / 34



Def. An upper semi-continuous function u on Ωopen ⊂ Rn is G-psh if

u
∣∣
P is subharmonic for all affine G-planes P

or

Equivalent Definition (Viscosity Theory). A test function for u at x ∈ Ω is a
C2-function φ defined near x such that

φ ≥ u and φ(x) = u(x)

Then u is G-psh if for each test function φ at a point x ∈ Ω

D2φ(x) ∈ F (G).

(If there does not exist a test function at x , this is automatically satisfied.)

(⇐ uses our Restriction Theorem)
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In fact, the set PSH(G) of G-psh functions on Ω gives us a

“G-POTENTIAL” OR “G-PLURIPOTENTIAL” THEORY

PSH(G) has many of the standard properties of subharmonic or
plurisubharmonic functions.

PSH(G) is a convex cone.

PSH(G) is closed under:

• decreasing limits

• uniform limits

• taking the maximum of two functions

• taking the USC-regularization of the upper envelope
of a locally bounded family of functions
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A MAIN POINT: Theorems in potential theory or pluripotential theory
lead to natural conjectures in G-potential theory

Some Examples:

1. G-convex hull of K ⊂ Ω is
K̂ ≡ {x ∈ Ω : u(x) ≤ supK u ∀u ∈ PSH(G)}

Def. Ω is G-convex if K ⊂⊂ Ω ⇒ K̂ ⊂⊂ Ω

Thm. Ω is G-convex ⇒ ∃ a G-psh exhaustion of Ω.

2. G-convexity of hypersurfaces

3. Andreotti-Frankel type theorems

4. Totally real submanifolds and Grauert’s Theorem

5. The Dirichlet Problem
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F (G) is a convex cone, with 0 as vertex, which contains

P ≡ {A ≥ 0},

i.e.,

P ⊂ F (G) ⊂ Sym2(Rn)

MAJOR POINT

∂F (G) can be viewed as a differential equation
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We solved the Dirichlet problem for this equation on any domain Ω
with strictly G-convex boundary for all continuous boundary values φ ∈ C(∂Ω)

The solutions are called G-harmonic.

∂Ω is strictly G-convex ⇐⇒ ∀G-planes P ⊂ T (∂Ω), tr
{

II
∣∣
P

}
> 0

Interestingly, for Ψ the Associative, Coassociative or Caley calibration,
there appears to be no polynomial function Q on Sym2(Rn) with

∂F{G(Ψ)} ⊂ Zeros(Q)

So there is no classical differential operator for this equation.
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We realized that this approach was much more general.

Let G ⊂ Grassp(Rn) be any closed set.

Then the whole discussion holds for F (G)

(G could be a Cantor-type set, a finite set, etc.)
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Important Example. G = Grassp(Rn)

u is G-subharmonic ⇐⇒ tr
{
(D2u)x

∣∣
P

}
≥ 0 ∀p-planes P at all points x

u is G-harmonic ⇐⇒ in addition tr
{
(D2u)x

∣∣
P

}
= 0 for some P at each x

⇐⇒
∏

i1<···<ip(λi1 + · · ·+ λip) ≡ Q(u) = 0

Q is the p-fold sum operator.

For p = 1 this is the Monge-Ampère operator.

The potential theory is very interesting.

Note that Q̃ ≡ the minimal λi1 + · · ·+ λip (the truncated Laplacian)
is an alternative operator for this potential theory.

(Here u is C2)
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Important Example. G = LAG ⊂ Grassn(Cn)

u is G-subharmonic ⇐⇒ tr
{

D2u
∣∣
P

}
≥ 0 ∀ Lagrangian P

u is G-harmonic ⇐⇒ in addition tr
{

D2u
∣∣
P

}
= 0 for some P at each x

⇐⇒ A Lagrangian Monge-Ampère operator vanishes.

(u is C2.)
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Subequations and Duality Theory

Definition. A subequation is a closed subset F ⊂ Sym2(Rn) s.t.

F + P ⊂ F .

Definition. The dual subequation is

F̃ = −(∼ IntF ) = ∼ (−IntF )

˜̃F = F

F + P ⊂ F ⇐⇒ F̃ + P ⊂ F̃
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Definition. An u.s.c. function u is F -subharmonic

if for every test function φ at a point x for u

(D2φ)x ∈ F

Definition. An function u is F -harmonic if

u is F -subharmonic and −u is F̃ -subharmonic.

u is C2 and F -harmonic ⇒ (D2u)x ∈ ∂F ∀ x
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Note: F -subharmonics give a Potential Theory

Note: There may be many operators Q with ∂F ⊂ {Q = 0}.
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u is F -subharmonic ⇐⇒ u is a subsolution

−u is F̃ -subharmonic ⇐⇒ u is a supersolution

Definition.
−→
F = all rays from 0 which are eventually in F .

Definition. ∂Ω is strictly
−→
F convex if at each x ∈ ∂Ω

IIx = B
∣∣
Tx (∂Ω)

for some B ∈ Int
−→
F .

THEOREM. (The Dirichlet Problem) Let Ω ⊂⊂ Rn be a domain with

smooth boundary ∂Ω which is both
−→
F and

−→

F̃ strictly convex.

Then for each φ ∈ C(∂Ω)

there exists a unique F -harmonic function u on Ω,

with a continuous extension to Ω satisfying

u
∣∣
∂Ω

= φ.
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Examples: For the following operators Q
Int F = the connected component containing I of {A : Q(A) > 0},

or the subset of this where Q(A) ≥ c > 0

Monge-Ampère equations over R,C or H.

Any σk (D2u) over R,C or H.

The examples above from p-convex geometry and Lagrangian geometry.

In fact, any Gårding-Dirichlet polynomial operator g(D2u).

Branches of the homogeneous equations above.
For example, for Monge-Ampère,

λk = 0
where λ1 ≤ · · · ≤ λn are the ev’s of the Hessian

The special Lagrangian potential equation with constant RHS.

functions of the principal curvatures of the graph

Many many equations with no smooth operator
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Incidentally, For the first four classes of operators mentioned above,
there was a remarkable paper by

Bin Guo, Duong H. Phong, and Freid Tong

Annals of Math. 198 (2023), 393-418

which established L∞-estimates for these operators in complex geometry.

It was based on a fundamental new idea of Chen and Cheng in their
ground-breaking work

Xiuxong Chen and Jungrui Cheng,

J. Amer. Math. Soc. 34 no.4 (2021), 909-1009

[GPT] gave a purely PDE proof of the Yau’s Theorem on the Calabi
Conjecture.

It has also engendered very much research recently

not a little part of it by Phong in collaboration with others, particularly Bin Guo.
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A Much More General Theory

X a manifold

J2(X ) −→ X = the bundle of 2-jets of functions
= the bundle of Taylor polynomials of degree 2

= R⊕ J2
red(X )

= R⊕ T ∗X ⊕ Sym2(T ∗X ) if riemannian

In local coordinate neighborhood U

J2(U) = R⊕ Rn ⊕ Sym2(Rn)

J2φ(x) = (φ(x),Dφ(x),D2φ(x))
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Definition. A subequation is a closed subset

F ⊂ J2(X )

s.t.
(1) F + P ⊂ F

where P ≡ 2-jets of functions with minimum value zero at x

(2) F +N ⊂ F

where N ≡ 2-jets of φ ≡ constant ≤ 0

Plus mild topological conditions
which hold in all interesting cases.
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As before
F̃ = −(∼ IntF )

Definition. u ∈ USC(X ) is F-subharmonic if

∀ test functions φ at a point x , J2
x (φ) ∈ Fx

Definition. u is F-harmonic if

u is F -subharmonic and −u is F̃ -subharmonic

Again there is an F potential theory.
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THE MONOTONICITY METHOD

A Monotonicity Cone is a convex cone subequation M ⊂ J2(X ) s.t.

F + M ⊂ F

which is equivalent to
F + F̃ ⊂ M̃

This is involved in establishing comparison.

If u is F -sub and −v is F̃ -sub, the function u − v satisfies the the Zero
Maximum Principle, i.e.,

u − v ≤ 0 on ∂Ω ⇒ u − v ≤ 0 on Ω.
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To prove the Dirichlet Problem for a domain Ω ⊂ X on a manifold we require
the existence of a global strictly M-subharmonic C2-function on Ω.

It is clear that one need something of this sort to give control over Ω. Just
giving the boundary values and the strict boundary convexity is not enough!

This is the only global assumption. It provides an important approximation.

For pure second order subequations P (also PC, PH in those cases)
is always a monotonicity cone.

In the classical complex case, this plus strict boundary convexity, implies that
Ω is Stein.
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Any O(n) invariant subequation

F0 ⊂ J2
0 (Rn) = R⊕ Rn ⊕ Sym2(Rn)

gives a subequation on every riemannian manifold.

One of Many Results

THEOREM. Let F be such a subequation. Suppose there exists a strictly
M-subharmonic function on X where M is a monotonicity cone for F .

Then for every domain Ω ⊂⊂ X whose boundary is strictly F and F̃ convex,
both existence and uniqueness for the Dirichlet Problem for F -harmonics
holds for all φ ∈ C(∂Ω).
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Suppose F0 ⊂ J2
0 (Rn) is a G-invariant subeqn for a compact Lie group G.

Then F0 defines a subequation on every manifold with a topological
reduction of it structure group to G

(Cover by tangent frames with transition functions valued in G.)

The Same Theorem holds in this case.
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We were also able to prove the inhomogeneous Dirichlet Problem

for the complex Monge-Ampère equation

on almost complex manifolds

with RHS ≥ 0.
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FOR THE PROOF

Recall that we want comparison.

If u is F -sub and −v is F̃ -sub, the function u − v satisfies the the Zero
Maximum Principle, i.e.,

u − v ≤ 0 on ∂Ω ⇒ u − v ≤ 0 on Ω.

Assume that the monotonicity assumption holds

Then we found the hypothesis of weak comparison:

u is Fc-sub for c > 0 and −v is F̃ -sub, where

Fc ≡ {A ∈ F : dist(A, ∂F ) ≥ c}.

(or the opposite) which implies comparison.

This hypothsis has the property that

LOCAL ⇒ GLOBAL
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So

The monotonicity assumption and local weak comparison

⇒ comparison
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An Important Technique

AFFINE JET EQUIVALENCE
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Given local coordinates (x1, ..., xn) on Uopen ⊂ Rn

J2(U) = U × R× Rn × Sym2(Rn)

J2
x (u) = (u(x),Dxu,D2

x u)

An AUTOMORPHISM
Φ : J2(U) −→ J2(U)

is given by

Φ(u,Du,D2u) = (u, g Du, h (D2u)ht + L(Du))

gx ,hx ∈ GL(n) and Lx : Rn −→ Sym2(Rn)
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• There is an invariant definition which works globally

• These form a group

• They are radical – they are much more than a change of coordinates.
If u is function, Φ(J2u) is essentially never the 2-jet of a function.

• Covers the expression of Hess(u) in local coordinates

An AFFINE AUTOMORPHISM

Ψ = Φ+ σ

Φ an automorphism and σ ∈ Γ(J2(U))

• This can convert homogeneous equations into inhomogeneous equations.
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THEOREM. Suppose F is a subequation on X which is locally affinely jet
equivalent to a constant coefficient subequation. Then weak comparison
holds for F .

Weak comparison

and the existence of a strict M subharmonic function

⇒ Comparison holds

⇒ Uniqueness of solutions to the Dirichlet problem

and, with boundary convexity, solutions to the Dirichlet problem exist.
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